cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377144 Decimal expansion of Integral_{x=0..oo} sin(x^2)*erfc(x) dx, where erfc is the complementary error function.

This page as a plain text file.
%I A377144 #13 Oct 19 2024 18:07:20
%S A377144 1,3,7,5,1,9,9,3,9,9,8,3,2,9,1,5,3,3,6,2,8,3,7,7,6,9,4,1,8,0,5,0,2,2,
%T A377144 9,2,4,6,3,4,3,3,8,6,7,8,4,2,1,9,1,4,0,3,3,6,0,7,7,2,6,9,9,1,4,7,6,4,
%U A377144 3,6,3,2,4,0,3,1,0,4,2,8,7,6,1,1,7,1,4,0,6,3
%N A377144 Decimal expansion of Integral_{x=0..oo} sin(x^2)*erfc(x) dx, where erfc is the complementary error function.
%H A377144 Paolo Xausa, <a href="/A377144/b377144.txt">Table of n, a(n) for n = 0..10000</a>
%H A377144 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Erfc.html">Erfc</a>.
%F A377144 Equals (Pi - 2*arcsinh(1))/(4*sqrt(2*Pi)) = (A000796 - A244920)/(4*A019727) (cf. eq. 12 in Weisstein link).
%e A377144 0.137519939983291533628377694180502292463433867842...
%t A377144 First[RealDigits[(Pi - 2*ArcSinh[1])/(4*Sqrt[2*Pi]), 10, 100]]
%Y A377144 Cf. A000796, A019727, A244920, A377143.
%K A377144 nonn,cons
%O A377144 0,2
%A A377144 _Paolo Xausa_, Oct 17 2024