A377173 Rectangular array, by antidiagonals: (row 1) = r(1) = A000040 (primes); (row n) = r(n) = prime(r(n-1)) for n>=1.
2, 3, 3, 5, 5, 5, 7, 11, 11, 11, 11, 17, 31, 31, 31, 13, 31, 59, 127, 127, 127, 17, 41, 127, 277, 709, 709, 709, 19, 59, 179, 709, 1787, 5381, 5381, 5381, 23, 67, 277, 1063, 5381, 15299, 52711, 52711, 52711
Offset: 1
Examples
corner: 2 3 5 7 11 13 17 3 5 11 17 31 41 59 5 11 31 59 127 179 277 11 31 127 277 709 1063 1787 31 127 709 1787 5381 8527 15299 127 709 5381 15299 52711 87803 167449 709 5381 52711 167449 648391 1128889 2269733
Crossrefs
Programs
-
Mathematica
r[0] = Range[16]; r[n_] := r[n] = Prime[r[n - 1]] Grid[Table[r[n], {n, 1, 6}]] (* array *) p[n_, k_] := r[n][[k]]; Table[p[n - k + 1, k], {n, 9}, {k, n, 1, -1}] // Flatten (* sequence *)
Formula
A049076(n) = number of appearances of prime(n).