cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377173 Rectangular array, by antidiagonals: (row 1) = r(1) = A000040 (primes); (row n) = r(n) = prime(r(n-1)) for n>=1.

Original entry on oeis.org

2, 3, 3, 5, 5, 5, 7, 11, 11, 11, 11, 17, 31, 31, 31, 13, 31, 59, 127, 127, 127, 17, 41, 127, 277, 709, 709, 709, 19, 59, 179, 709, 1787, 5381, 5381, 5381, 23, 67, 277, 1063, 5381, 15299, 52711, 52711, 52711
Offset: 1

Views

Author

Clark Kimberling, Oct 19 2024

Keywords

Examples

			corner:
   2     3      5       7      11       13       17
   3     5     11      17      31       41       59
   5    11     31      59     127      179      277
  11    31    127     277     709     1063     1787
  31   127    709    1787    5381     8527    15299
 127   709   5381   15299   52711    87803   167449
 709  5381  52711  167449  648391  1128889  2269733
		

Crossrefs

Cf. A000040 (row 1), A007097 (column 1), A006450 (row 2), A038580 (row 3), A058009 (principal diagonal), A049076, A114537, A377181.

Programs

  • Mathematica
    r[0] = Range[16];
    r[n_] := r[n] = Prime[r[n - 1]]
    Grid[Table[r[n], {n, 1, 6}]]  (* array *)
    p[n_, k_] := r[n][[k]];
    Table[p[n - k + 1, k], {n, 9}, {k, n, 1, -1}] // Flatten  (* sequence *)

Formula

A049076(n) = number of appearances of prime(n).