A377209 Zeckendorf-Niven numbers (A328208) k such that k/z(k) is also a Zeckendorf-Niven number, where z(k) = A007895(k) is the number of terms in the Zeckendorf representation of k.
1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 16, 21, 24, 26, 30, 34, 36, 42, 48, 55, 60, 66, 68, 72, 78, 81, 89, 90, 108, 110, 120, 126, 135, 144, 152, 168, 178, 180, 192, 204, 207, 233, 240, 243, 264, 270, 276, 288, 300, 304, 312, 324, 330, 336, 360, 377, 380, 390, 396, 408
Offset: 1
Examples
12 is a term since 12/z(12) = 4 is an integer and also 4/z(4) = 2 is an integer.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
zeck[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; (* Alonso del Arte at A007895 *) q[k_] := Module[{z = zeck[k]}, Divisible[k, z] && Divisible[k/z, zeck[k/z]]]; Select[Range[400], q]
-
PARI
zeck(n) = if(n<4, n>0, my(k=2, s, t); while(fibonacci(k++)<=n, ); while(k && n, t=fibonacci(k); if(t<=n, n-=t; s++); k--); s) \\ Charles R Greathouse IV at A007895 is(k) = {my(z = zeck(k)); !(k % z) && !((k/z) % zeck(k/z)); }