cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A376999 a(n) is the least number k that is a quadratic residue modulo prime(n) but is a quadratic nonresidue modulo all previous odd primes.

Original entry on oeis.org

0, 5, 2, 38, 17, 83, 362, 167, 227, 2273, 398, 5297, 64382, 69467, 116387, 238262, 214037, 430022, 5472953, 9481097, 8062073, 41941577, 86374763, 312521282
Offset: 2

Views

Author

Robert Israel, Oct 20 2024

Keywords

Examples

			a(5) = 38 because 38 is a quadratic residue modulo prime(5) = 11 but is not a quadratic residue modulo the previous odd primes 3, 5 and 7, and no number smaller than 38 works.
		

Crossrefs

Cf. A377212.

Programs

  • Maple
    f:= proc(n) local k,p;
      p:= 2;
      for k from 2 do
          p:= nextprime(p);
          if numtheory:-quadres(n,p) = 1 then return k fi
      od
    end proc:
    V:= Array(2..25): count:= 0:
    for k from 2 while count < 24 do
      v:= f(k);
    if v > 0 and v <= 25 and V[v] = 0 then
      V[v]:= k; count:= count+1;
    fi;
    od:
    V[2]:= 0:
    convert(V,list);

A385050 a(n) is the least positive number k such that n is the greatest m such that k is a quadratic residue mod prime(i) for i=1..m and {k mod prime(i): i=1..m} are all distinct.

Original entry on oeis.org

1, 3, 4, 184, 9, 1479, 20799, 31509, 162094, 83554, 828844, 895449, 4631104, 86925309, 97476129, 14684224, 33547264, 5381151099, 516743824, 1958770564, 112746608529, 3046156864, 373079083204, 1394424964, 297469886464, 1596601563489, 976001733184, 33344131402059
Offset: 1

Views

Author

Charles L. Hohn, Jun 16 2025

Keywords

Comments

For n >= 4, {a(n) mod 105} = {9, 79}.

Examples

			a(1) = 1: |{1}| = 1: 1 mod 2 = 1^2 mod 2, terminates at 1 mod 3 (not distinct: repeats 1 mod 2).
a(2) = 3: |{1, 0}| = 2: 3 mod 2 = 1^2 mod 2, 3 mod 3 = 0^2 mod 3, terminates at 3 mod 5 (nonsquare).
a(3) = 4: |{0, 1, 4}| = 3.
a(4) = 184: |{0, 1, 4, 2}| = 4 (2 = 3^2 mod 7).
a(5) = 9: |{1, 0, 4, 2, 9}| = 5.
a(6) = 1479: |{1, 0, 4, 2, 5, 10}| = 6.
		

Crossrefs

Cf. A377212 (nondistinct squares), A385051 (distinct nonsquares), A279074 (distinct moduli).

Programs

  • PARI
    a(n)={my(v=List); for(k=1, oo, my(m=Map); for(i=1, oo, my(p=prime(i), kp=k%p); if(i>#v, listput(v, Map); for(j=0, (p-p%2)/2, mapput(v[i], j^2%p, 1))); if(mapisdefined(v[i], kp) && !mapisdefined(m, kp), mapput(m, kp, 1); next); if(i-1==n, return(k)); break))}

A377380 a(n) is the first positive number k such that k is alternately a quadratic residue and nonresidue modulo the first n primes, but not the n+1'th.

Original entry on oeis.org

1, 2, 11, 41, 26, 5, 671, 89, 59, 1181, 1991, 3755, 21521, 34145, 25994, 137885, 61106, 1503029, 2617439, 1008551, 2897081, 22363295, 33603926, 36518450, 79865294, 185914490, 593068985, 2211452939, 2120224529, 1673286179, 2644173521, 1976870465
Offset: 1

Views

Author

Robert Israel, Oct 27 2024

Keywords

Comments

a(n) == 2 (mod 3) for n >= 2.

Examples

			a(3) = 11 because 11 is a quadratic residue mod 2, a nonresidue mod 3, a residue mod 5, but a residue mod 7, and no smaller number works.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    N:= 20:
    V:= Vector(N): V[1]:= 1: count:= 1:
    for x from 2 by 3 while count < N do
      p:= 1:
      for m from 0 do
        p:= nextprime(p);
        if numtheory:-quadres(x,p) <> (-1)^m then break fi;
      od;
      if V[m] = 0 then
        V[m]:= x; count:= count+1;
      fi
    od:
    convert(V,list);
Showing 1-3 of 3 results.