This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377217 #15 Oct 31 2024 01:35:40 %S A377217 1,1,2,14,127,1364,16219,206715,2770342,38567069,553153830,8126285739, %T A377217 121758839828,1854687918895,28649693078544,447912211497740, %U A377217 7076246388778874,112821090561117084,1813395701702453669 %N A377217 Expansion of the o.g.f. A(x) defined by [x^n] A(x)^(6*n) = (3*n)!/n!^3 for n >= 0. %C A377217 Compare with A000984(n) = [x^n] (1 + x)^(2*n) = (2*n)!/n!^2. %C A377217 The central binomial coefficients A000984(n) satisfy the supercongruences u(n*p^k) == u(n*p^(k-1)) (mod p^(3*k)) for all primes p >= 5 and positive integers n and k. %C A377217 More generally, for positive integers r and s, the sequence {u(r,s; n) : n >= 0} defined by u(r,s; n) = [x^(s*n)] (1 + x)^(r*n) = binomial(r*n, s*n) satisfies the same supercongruences (Meštrović, Section 6, equation 39). %C A377217 Conjecture: for positive integers r and s, the sequence {v(r,s; n) : n >= 0} defined by v(r,s; n) = [x^(s*n)] A(x)^(r*n) also satisfies the same supercongruences. %H A377217 Romeo Meštrović, <a href="https://arxiv.org/abs/1111.3057">Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2012)</a>, arXiv:1111.3057 [math.NT], (2011). %F A377217 O.g.f.: A(x) = ( x/(x * series_reversion(E(x)))^(1/6), where E(x) = exp(Sum_{n >= 1} (3*n)!/n!^3 *x^n/n) is the o.g.f. of A229451. %p A377217 Order := 25: %p A377217 E(x) := exp(add((3*n)!/n!^3 * x^n/n, n = 1..25)): %p A377217 solve(series(x*E(x),x) = y, x): %p A377217 convert(%, polynom): %p A377217 g := taylor(y/%, y = 0, 25): %p A377217 seq(coeftayl(g^(1/6), y = 0, n), n = 0..20); %Y A377217 Cf. A006480, A060542, A229451, A229452, A377218, A377219. %K A377217 nonn,easy %O A377217 0,3 %A A377217 _Peter Bala_, Oct 20 2024