cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377224 Number of ways to write n as x*(5*x+1) + y*(5*y+1)/2 + z*(5*z+1)/2, where x,y,z are integers with y*(5*y+1) <= z*(5*z+1).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 3, 1, 2, 3, 2, 3, 2, 2, 1, 3, 1, 3, 4, 1, 3, 2, 4, 2, 6, 2, 4, 5, 4, 3, 5, 3, 3, 4, 2, 2, 4, 1, 3, 3, 3, 3, 7, 1, 6, 6, 6, 3, 8, 4, 3, 7, 3, 7, 4, 4, 2, 4, 1, 5, 6, 1, 6, 7, 4, 4, 9, 6, 5, 8, 3, 6, 5, 3, 4, 5, 3, 3, 4, 1, 9, 6, 5, 3, 9, 5, 6, 9, 6, 8, 10, 3, 3, 9, 4, 7, 7, 4, 7, 5, 4
Offset: 0

Views

Author

Zhi-Wei Sun, Nov 13 2024

Keywords

Comments

Conjecture 1: a(n) = 0 only for n = 1. Also, a(n) = 1 only for n = 0, 2, 3, 5, 7, 14, 16, 19, 37, 43, 58, 61, 79.
This has been verified for n <= 2*10^6.
Conjecture 2: Let N be the set of all nonnegative integers. Then
{x*(5*x+1) + y*(5*y+1)/2 + 5*z*(5*z+1)/2: x,y,z are integers} = N\{1,5},
{x*(5*x+1) + y*(5*y+1)/2 + 3*z*(5*z+1)/2: x,y,z are integers} = N\{1,5,32},
{x*(5*x+1) + y*(5*y+1)/2 + 2*z*(5*z+1): x,y,z are integers} = N\{1,5,70},
and
{x*(5*x+1)/2 + y*(5*y+1)/2 + z*(5*z+1)/2: x,y,z are integers} = N\{1,10,19,94}.
Conjecture 3: We have
{x*(5*x+3) + y*(5*y+3)/2 + 3*z*(5*z+3)/2: x,y,z are integers} = N\{31,77},
{x*(5*x+3) + y*(5*y+3)/2 + 5*z*(5*z+3): x,y,z are integers} = N\{10,16},
and
{x*(5*x+3)/2 + y*(5*y+3)/2 + 5*z*(5*z+3)/2: x,y,z are integers} = N\{3,15,29,44}.

Examples

			a(14) = 1 with 14 = 0*(5*0+1) + 1*(5*1+1)/2 + 2*(5*2+1)/2.
a(37) = 1 with 37 = (-1)*(5*(-1)+1) + (-2)*(5*(-2)+1)/2 + 3*(5*3+1)/2.
a(58) = 1 with 58 = (-2)*(5*(-2)+1) + (-1)*(5*(-1)+1)/2 + (-4)*(5*(-4)+1)/2.
a(79) = 1 with 79 = -4*(5*(-4)+1) + 0*(5*0+1)/2 + 1*(5*1+1)/2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[40(n-x(5x+1)-y(5y+1)/2)+1],r=r+1],{x,-Floor[(Sqrt[20n+1]+1)/10],(Sqrt[20n+1]-1)/10},{y,-Floor[(Sqrt[20(n-x(5x+1))+1]+1)/10],Floor[(Sqrt[20(n-x(5x+1))+1]-1)/10]}];tab=Append[tab,r],{n,0,100}];Print[tab]