cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377235 Expansion of 1/(1 - 9*x/(1-x))^(5/3).

This page as a plain text file.
%I A377235 #16 May 04 2025 04:22:44
%S A377235 1,15,195,2355,27285,307833,3409485,37253805,402847620,4320615390,
%T A377235 46032234486,487743084150,5144152999650,54041442437850,
%U A377235 565803538944450,5906360704312770,61495776957754725,638808193722602175,6622218378818049075,68522901145021162275,707856527414874575805
%N A377235 Expansion of 1/(1 - 9*x/(1-x))^(5/3).
%F A377235 a(0) = 1; a(n) = 3 * Sum_{k=0..n-1} (5-2*k/n) * a(k).
%F A377235 a(n) = ((11*n+4)*a(n-1) - 10*(n-2)*a(n-2))/n for n > 1.
%F A377235 a(n) = Sum_{k=0..n} (-9)^k * binomial(-5/3,k) * binomial(n-1,n-k).
%F A377235 a(n) ~ Gamma(1/3) * 3^(29/6) * 2^(n - 11/3) * 5^(n - 5/3) * n^(2/3) / Pi. - _Vaclav Kotesovec_, Oct 21 2024
%F A377235 a(n) = 15*hypergeom([8/3, 1-n], [2], -9) for n > 0. - _Stefano Spezia_, May 04 2025
%o A377235 (PARI) a(n) = sum(k=0, n, (-9)^k*binomial(-5/3, k)*binomial(n-1, n-k));
%Y A377235 Cf. A052268, A361375, A377233, A377234.
%K A377235 nonn
%O A377235 0,2
%A A377235 _Seiichi Manyama_, Oct 21 2024