A377245 Number of equivalence classes of convex lattice polygons containing n lattice points, restricting the count to those polygons that are interior to another polygon.
1, 3, 4, 5, 7, 11, 16, 21, 25, 37, 46, 60, 69, 95, 110, 146, 179, 218, 258, 328, 378, 480, 557, 680, 792, 965, 1090, 1320, 1549, 1814, 2091, 2487, 2839, 3360, 3809, 4406, 5062, 5893, 6594, 7642, 8705, 9955, 11254, 12852, 14395, 16556, 18588, 20894, 23535
Offset: 3
Keywords
Links
- Justus Springer, Table of n, a(n) for n = 3..112
- Wouter Castryck, Moving Out the Edges of a Lattice Polygon, Discrete Comput. Geom., 47 (2012), p. 496-518.
- R. J. Koelman, The number of moduli families of curves on toric surfaces, Dissertation (1991), Chapter 4.4.
- Justus Springer, RationalPolygons.jl (Version 1.0.0) [Computer software], 2024.
- Justus Springer and Martin Bohnert, Lattice polygons with at most 70 lattice points (1.1.0) [Data set], 2024.
Comments