This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377246 #5 Oct 22 2024 07:37:48 %S A377246 0,0,0,108,25200,6566400,2263917600,1070863718400,695561049469440, %T A377246 612326076235776000,716999439503394432000,1094463733944478334976000, %U A377246 2136344904330981293005056000,5240068882948994816402679398400,15901807526128013295439617984000000,58888414506334327924778872791367680000,262906951354695579633857525111586324480000 %N A377246 a(n) = (n!^2*n^(n-1)/4) * Sum_{k=4..n} A000276(k) / (n^k * (n-k)!). %C A377246 The formula was listed in A174637 by _Vladimir Shevelev_. However, it produces a different sequence given here. Apparently, it is also related to permanents of (0,1)-matrices. %D A377246 V. S. Shevelev, On the permanent of the stochastic (0,1)-matrices with equal row sums, Izvestia Vuzov of the North-Caucasus region, Nature sciences 1 (1997), 21-38 (in Russian). %F A377246 a(n) = (n!^2*n^(n-1)/4) * Sum_{k=4..n} A000276(k) / (n^k * (n-k)!). %F A377246 For n>=3, a(n) = n! * (((n-1)!/4)*A000276(n) + Sum_{k=2..n-1} (-1)^(n+k+1) * binomial(n,k) * k^(n-k) * a(k)/k!). %Y A377246 Cf. A000276, A174637. %K A377246 nonn %O A377246 1,4 %A A377246 _Max Alekseyev_, Oct 21 2024