cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377271 Numbers k such that k and k+1 are both terms in A377209.

Original entry on oeis.org

1, 2, 3, 4, 5, 12, 89, 1824, 3024, 7024, 15084, 17184, 18935, 22624, 28657, 29424, 31464, 37024, 38835, 40032, 42679, 44975, 47375, 66744, 66815, 78219, 89495, 107456, 112175, 119744, 144599, 148519, 169883, 171941, 172025, 188208, 207935, 226624, 244404, 248255
Offset: 1

Views

Author

Amiram Eldar, Oct 22 2024

Keywords

Examples

			1824 is a term since both 1824 and 1825 are in A377209: 1824/A007895(1824) = 304 and 304/A007895(304) = 76 are integers, and 1825/A007895(1825) = 365 and 365/A007895(365) = 73 are integers.
		

Crossrefs

Cf. A007895, A376793 (binary analog).
Subsequence of A328208, A328209 and A377209.
Subsequences: A377272, A377273.

Programs

  • Mathematica
    zeck[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; (* Alonso del Arte at A007895 *)
    q[k_] := q[k] = Module[{z = zeck[k]}, Divisible[k, z] && Divisible[k/z, zeck[k/z]]]; Select[Range[250000], q[#] && q[#+1] &]
  • PARI
    zeck(n) = if(n<4, n>0, my(k=2, s, t); while(fibonacci(k++)<=n, ); while(k && n, t=fibonacci(k); if(t<=n, n-=t; s++); k--); s); \\ Charles R Greathouse IV at A007895
    is1(k) = {my(z = zeck(k)); !(k % z) && !((k/z) % zeck(k/z)); }
    lista(kmax) = {my(q1 = is1(1), q2); for(k = 2, kmax, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2); }

A377457 Numbers k such that k and k+1 are both terms in A377386.

Original entry on oeis.org

1, 12563307224, 15897851550, 30412355999, 37706988600, 52576459775, 67673545631, 118533901904, 244316235000, 297265003100, 332110595000, 340800265728, 349358409503, 375624917760, 378624889440, 416375389115, 450026519903, 561162864248, 596004199840, 728643460544
Offset: 1

Views

Author

Amiram Eldar, Oct 29 2024

Keywords

Examples

			12563307224 is a term since both 12563307224 and 12563307225 are in A377386: 12563307224/A034968(12563307224) = 369509036, 369509036/A034968(369509036) = 9723922 and 9723922/A034968(9723922) = 373997 are integers, and 12563307225/A034968(12563307225) = 358951635, 358951635/A034968(358951635) = 7976703 and 7976703/A034968(7976703) = 257313 are integers.
		

Crossrefs

Cf. A034968.
Subsequence of A118363, A328205, A377385, A377386 and A377455.
Analogous sequences: A376795 (binary), A377272 (Zeckendorf).

Programs

  • PARI
    fdigsum(n) = {my(k = n, m = 2, r, s = 0); while([k, r] = divrem(k, m); k != 0 || r != 0, s += r; m++); s;}
    is1(k) = {my(f = fdigsum(k), f2, m); if(k % f, return(0)); m = k/f; f2 = fdigsum(m); !(m % f2) && !((m/f2) % fdigsum(m/f2));}
    lista(kmax) = {my(q1 = is1(1), q2); for(k = 2, kmax, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2);}
Showing 1-2 of 2 results.