cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377275 Decimal expansion of the volume of a truncated tetrahedron with unit edge length.

This page as a plain text file.
%I A377275 #8 Oct 25 2024 09:25:56
%S A377275 2,7,1,0,5,7,5,9,9,4,5,4,8,4,3,2,1,7,6,8,6,9,9,0,3,3,8,8,0,6,8,5,8,7,
%T A377275 9,8,3,9,2,5,2,0,4,4,2,7,8,0,5,8,1,7,1,4,0,2,5,5,3,0,2,8,3,1,1,4,8,9,
%U A377275 0,3,9,1,7,0,5,2,3,7,1,8,2,4,4,6,3,2,4,2,7,7
%N A377275 Decimal expansion of the volume of a truncated tetrahedron with unit edge length.
%H A377275 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TruncatedTetrahedron.html">Truncated Tetrahedron</a>.
%H A377275 Wikipedia, <a href="https://en.wikipedia.org/wiki/Truncated_tetrahedron">Truncated tetrahedron</a>.
%F A377275 Equals (23/12)*sqrt(2) = (23/12)*A002193.
%e A377275 2.7105759945484321768699033880685879839252044278...
%t A377275 First[RealDigits[23/12*Sqrt[2], 10, 100]] (* or *)
%t A377275 First[RealDigits[PolyhedronData["TruncatedTetrahedron", "Volume"], 10, 100]]
%Y A377275 Cf. A377274 (surface area), A377276 (circumradius), A093577 (midradius), A377277 (Dehn invariant).
%Y A377275 Cf. A020829 (analogous for a regular tetrahedron).
%Y A377275 Cf. A002193.
%K A377275 nonn,cons,easy
%O A377275 1,1
%A A377275 _Paolo Xausa_, Oct 23 2024