This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377278 #8 Nov 15 2024 23:33:31 %S A377278 1,3,3,3,21,7,3,21,105,15,3,21,105,465,31,3,21,105,465,1953,63,3,21, %T A377278 105,465,1953,8001,127,3,21,105,465,1953,8001,32385,255,3,21,105,465, %U A377278 1953,8001,32385,130305,511,3,21,105,465,1953,8001,32385,130305,522753,1023 %N A377278 Denominators in a harmonic triangle; q-analog of A126615, here q = 2. %C A377278 The harmonic triangle uses the terms of this sequence as denominators, numerators = 1. The inverse of the harmonic triangle has entries -2^(n-k-1) for 1<=k<n (subdiagonals) and 2^n - 1 (main diagonal). %C A377278 Conjecture: Row sums of the harmonic triangle are A204243(n) / A005329(n). %F A377278 T(n, k) = (2^k - 1) * (2^(k+1) - 1) for 1 <= k < n; T(n, n) = 2^n - 1. %F A377278 Sum_{k=1..n} 2^(k-1) / T(n, k) = 1. %F A377278 Product_{k=1..n} T(n, k)^((-1)^k) = 1. %F A377278 Row sums are n + 4 * (2^n - 1) * (2^(n-1) - 1) / 3 = n + 4 * A006095(n). %F A377278 G.f.: x*y*(1 + 2*x - 4*x*y + 4*x^2*y)/((1 - x)*(1 - x*y)(1 - 2*x*y)*(1 - 4*x*y)). - _Stefano Spezia_, Oct 23 2024 %e A377278 Triangle T(n, k) for 1 <= k <= n starts: %e A377278 n\ k : 1 2 3 4 5 6 7 8 9 10 %e A377278 ================================================================ %e A377278 1 : 1 %e A377278 2 : 3 3 %e A377278 3 : 3 21 7 %e A377278 4 : 3 21 105 15 %e A377278 5 : 3 21 105 465 31 %e A377278 6 : 3 21 105 465 1953 63 %e A377278 7 : 3 21 105 465 1953 8001 127 %e A377278 8 : 3 21 105 465 1953 8001 32385 255 %e A377278 9 : 3 21 105 465 1953 8001 32385 130305 511 %e A377278 10 : 3 21 105 465 1953 8001 32385 130305 522753 1023 %e A377278 etc. %e A377278 The harmonic triangle starts: %e A377278 [1] 1/1 %e A377278 [2] 1/3 1/3 %e A377278 [3] 1/3 1/21 1/7 %e A377278 [4] 1/3 1/21 1/105 1/15 %e A377278 [5] 1/3 1/21 1/105 1/465 1/31 %e A377278 [6] 1/3 1/21 1/105 1/465 1/1953 1/63 %e A377278 etc. %e A377278 The inverse of the harmonic triangle starts: %e A377278 [1] 1 %e A377278 [2] -1 3 %e A377278 [3] -2 -1 7 %e A377278 [4] -4 -2 -1 15 %e A377278 [5] -8 -4 -2 -1 31 %e A377278 [6] -16 -8 -4 -2 -1 63 %e A377278 etc. %o A377278 (PARI) T(n,k)=if(k<n,(2^k-1)*(2^(k+1)-1),2^n-1) %Y A377278 Cf. A000225, A005329, A006095, A126615, A204243. %K A377278 nonn,easy,tabl,frac %O A377278 1,2 %A A377278 _Werner Schulte_, Oct 22 2024