This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377285 #26 Dec 15 2024 12:58:39 %S A377285 0,1,1,5,5,8,20,7,22 %N A377285 Position of first 0 in the n-th differences of the strict partition numbers A000009, or 0 if 0 does not appear. %C A377285 Open problem: Do the 9th differences of the strict integer partition numbers contain a zero? If so, we must have a(9) > 10^5. %C A377285 a(12) = 47. Conjecture: a(n) = 0 for n > 12. - _Chai Wah Wu_, Dec 15 2024 %e A377285 The 7th differences of A000009 are: 25, -16, 7, -6, 10, -9, 0, 10, ... so a(7) = 7. %t A377285 Table[Position[Differences[PartitionsQ/@Range[0,100],k],0][[1,1]],{k,1,8}] %o A377285 (PARI) a(n, nn=100) = my(q='q+O('q^nn), v=Vec(eta(q^2)/eta(q))); for (i=1, n, my(w=vector(#v-1, k, v[k+1]-v[k])); v = w;); my(vz=select(x->x==0, v, 1)); if (#vz, vz[1]); \\ _Michel Marcus_, Dec 15 2024 %Y A377285 For primes we have A376678. %Y A377285 For composites we have A377037. %Y A377285 For squarefree numbers we have A377042. %Y A377285 For nonsquarefree numbers we have A377050. %Y A377285 For prime-powers we have A377055. %Y A377285 Position of first zero in each row of A378622. See also: %Y A377285 - A175804 is the version for partitions. %Y A377285 - A293467 gives first column (up to sign). %Y A377285 - A378970 gives row-sums. %Y A377285 - A378971 gives row-sums of absolute value. %Y A377285 A000009 counts strict integer partitions, differences A087897, A378972. %Y A377285 A000041 counts integer partitions, differences A002865, A053445. %Y A377285 Cf. A047966, A098859, A225486, A325244, A325282. %Y A377285 Cf. A008284, A116608, A325242, A325268, A225485 or A325280. %K A377285 nonn,more %O A377285 0,4 %A A377285 _Gus Wiseman_, Dec 12 2024