This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377286 #10 Oct 27 2024 13:03:43 %S A377286 1,3,5,7,8,10,12,13,14,16,17,19,20,21,23,24,25,26,27,28,29,32,33,34, %T A377286 35,36,37,38,40,41,42,43,44,45,46,47,48,49,50,51,52,55,56,57,58,59,60, %U A377286 62,63,64,65,66,67,69,70,71,73,74,75,76,77,78,79,80,81,82 %N A377286 Numbers k such that there are no prime-powers between prime(k)+1 and prime(k+1)-1. %e A377286 Primes 18 and 19 are 61 and 67, and the interval (62, 63, 64, 65, 66) contains the prime-power 64, so 18 is not in the sequence. %t A377286 Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],PrimePowerQ]]==0&] %o A377286 (Python) %o A377286 from itertools import count, islice %o A377286 from sympy import factorint, nextprime %o A377286 def A377286_gen(): # generator of terms %o A377286 p, q, k = 2, 3, 1 %o A377286 for k in count(1): %o A377286 if all(len(factorint(i))>1 for i in range(p+1,q)): %o A377286 yield k %o A377286 p, q = q, nextprime(q) %o A377286 A377286_list = list(islice(A377286_gen(),66)) # _Chai Wah Wu_, Oct 27 2024 %Y A377286 The interval from A008864(n) to A006093(n+1) has A046933(n) elements. %Y A377286 For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A304521. %Y A377286 The nearest prime-power before prime(n)-1 is A065514, difference A377289. %Y A377286 These are the positions of 0 in A080101, or 1 in A366833. %Y A377286 The nearest prime-power after prime(n)+1 is A345531, difference A377281. %Y A377286 For at least one prime-power we have A377057. %Y A377286 For one instead of no prime-powers we have A377287. %Y A377286 For two instead of no prime-powers we have A377288. %Y A377286 A000015 gives the least prime-power >= n. %Y A377286 A000040 lists the primes, differences A001223. %Y A377286 A000961 lists the powers of primes, differences A057820. %Y A377286 A031218 gives the greatest prime-power <= n. %Y A377286 A246655 lists the prime-powers not including 1, complement A361102. %Y A377286 Cf. A001597, A002808, A024619, A053707, A064113, A065890, A075526, A095195, A276781, A376597, A377051, A377282. %K A377286 nonn %O A377286 1,2 %A A377286 _Gus Wiseman_, Oct 25 2024