cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377298 Decimal expansion of the surface area of a truncated cube with unit edge length.

This page as a plain text file.
%I A377298 #6 Oct 25 2024 09:26:38
%S A377298 3,2,4,3,4,6,6,4,3,6,3,6,1,4,8,9,5,1,7,2,6,7,5,1,5,7,3,7,3,5,2,8,1,2,
%T A377298 1,6,7,6,7,2,1,6,7,3,0,1,2,1,4,4,1,3,8,1,3,4,2,3,1,7,7,0,8,1,4,7,9,2,
%U A377298 6,5,5,7,7,5,3,6,2,8,8,4,5,4,0,3,6,6,9,4,2,7
%N A377298 Decimal expansion of the surface area of a truncated cube with unit edge length.
%H A377298 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TruncatedCube.html">Truncated Cube</a>.
%H A377298 Wikipedia, <a href="https://en.wikipedia.org/wiki/Truncated_cube">Truncated cube</a>.
%F A377298 Equals 2*(6 + 6*sqrt(2) + sqrt(3)) = 2*(6 + 2*A002193 + A002194) = 12 + 2*A010524 + A010469.
%e A377298 32.4346643636148951726751573735281216767216730121...
%t A377298 First[RealDigits[2*(6 + Sqrt[72] + Sqrt[3]), 10, 100]] (* or *)
%t A377298 First[RealDigits[PolyhedronData["TruncatedCube", "SurfaceArea"], 10, 100]]
%Y A377298 Cf. A377299 (volume), A294968 (circumradius), A010503 (midradius - 1), A377296 (Dehn invariant, negated).
%Y A377298 Cf. A002193, A002194, A010469, A010524.
%K A377298 nonn,cons,easy
%O A377298 2,1
%A A377298 _Paolo Xausa_, Oct 25 2024