cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377299 Decimal expansion of the volume of a truncated cube with unit edge length.

This page as a plain text file.
%I A377299 #4 Oct 25 2024 09:26:48
%S A377299 1,3,5,9,9,6,6,3,2,9,1,0,7,4,4,4,3,5,6,1,0,7,4,5,4,7,3,7,9,6,4,5,2,5,
%T A377299 7,6,9,9,9,9,1,8,0,2,0,8,5,0,9,2,4,2,4,3,4,1,4,9,1,1,7,2,1,1,0,6,2,3,
%U A377299 4,1,8,2,3,2,8,2,3,1,6,6,1,8,1,3,0,1,8,0,8,4
%N A377299 Decimal expansion of the volume of a truncated cube with unit edge length.
%H A377299 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TruncatedCube.html">Truncated Cube</a>.
%H A377299 Wikipedia, <a href="https://en.wikipedia.org/wiki/Truncated_cube">Truncated cube</a>.
%F A377299 Equals 7 + (14/3)*sqrt(2) = 7 + 14*A131594.
%e A377299 13.599663291074443561074547379645257699991802085...
%t A377299 First[RealDigits[7 + 14*Sqrt[2]/3, 10, 100]] (* or *)
%t A377299 First[RealDigits[PolyhedronData["TruncatedCube", "Volume"], 10, 100]]
%Y A377299 Cf. A377298 (surface area), A294968 (circumradius), A010503 (midradius - 1), A377296 (Dehn invariant, negated).
%Y A377299 Cf. A131594.
%K A377299 nonn,cons,easy
%O A377299 2,2
%A A377299 _Paolo Xausa_, Oct 25 2024