cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377300 G.f.: Sum_{k>=1} k * x^(k*(7*k - 7 + 2)/2) / (1 - x^k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 4, 3, 1, 6, 1, 3, 4, 3, 1, 6, 1, 3, 4, 3, 1, 6, 1, 3, 4, 3, 1, 6, 5, 3, 4, 3, 5, 6, 1, 3, 8, 3, 1, 6, 5, 3, 4, 3, 5, 6, 1, 3, 8, 3, 1, 6, 5, 3, 4, 3, 5, 11, 1, 3, 8, 3, 6, 6, 5, 3, 4, 8, 5, 6, 1, 3, 13
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 23 2024

Keywords

Comments

In general, for d > 0, if g.f. = Sum_{k>=1} k * x^(k*(d*k - d + 2)/2) / (1 - x^k), then Sum_{k=1..n} a(k) ~ 2^(3/2) * n^(3/2) / (3*sqrt(d)).

Crossrefs

Column 7 of A334466.

Programs

  • Mathematica
    Table[Sum[If[n > 7*k*(k-1)/2 && IntegerQ[n/k - 7*(k-1)/2], k, 0], {k, Divisors[2*n]}], {n, 1, 100}]
    nmax = 100; Rest[CoefficientList[Series[Sum[k*x^(k*(7*k - 7 + 2)/2)/(1 - x^k), {k, 1, Sqrt[2*nmax/7] + 1}], {x, 0, nmax}], x]]

Formula

Sum_{k=1..n} a(k) ~ 2^(3/2) * n^(3/2) / (3*sqrt(7)).