cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377301 G.f.: Sum_{k>=1} k * x^(k*(4*k-3)) / (1 - x^k).

This page as a plain text file.
%I A377301 #9 Oct 23 2024 08:48:54
%S A377301 1,1,1,1,1,1,1,1,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,4,3,1,6,1,3,4,3,
%T A377301 1,6,1,3,4,3,1,6,1,3,4,3,1,6,1,3,4,7,1,6,1,7,4,3,1,10,1,3,4,7,1,6,1,7,
%U A377301 4,3,1,10,1,3,4,7,1,6,1,7,4,3,1,10,6,3,4,7,1,11
%N A377301 G.f.: Sum_{k>=1} k * x^(k*(4*k-3)) / (1 - x^k).
%C A377301 In general, for d > 0, if g.f. = Sum_{k>=1} k * x^(k*(d*k - d + 2)/2) / (1 - x^k), then Sum_{k=1..n} a(k) ~ 2^(3/2) * n^(3/2) / (3*sqrt(d)).
%H A377301 Vaclav Kotesovec, <a href="/A377301/b377301.txt">Table of n, a(n) for n = 1..10000</a>
%F A377301 Sum_{k=1..n} a(k) ~ n^(3/2) / 3.
%t A377301 Table[Sum[If[n > 4*k*(k-1), k, 0], {k, Divisors[n]}], {n, 1, 100}]
%t A377301 nmax = 100; Rest[CoefficientList[Series[Sum[k*x^(k*(4*k - 3))/(1 - x^k), {k, 1, Sqrt[nmax/4] + 1}], {x, 0, nmax}], x]]
%Y A377301 Column 8 of A334466.
%K A377301 nonn
%O A377301 1,10
%A A377301 _Vaclav Kotesovec_, Oct 23 2024