cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377304 a(n) is the number of distinct cuboids whose edges are divisors of n.

This page as a plain text file.
%I A377304 #20 Nov 17 2024 07:41:34
%S A377304 1,4,4,10,4,20,4,20,10,20,4,56,4,20,20,35,4,56,4,56,20,20,4,120,10,20,
%T A377304 20,56,4,120,4,56,20,20,20,165,4,20,20,120,4,120,4,56,56,20,4,220,10,
%U A377304 56,20,56,4,120,20,120,20,20,4,364,4,20,56,84,20,120,4,56
%N A377304 a(n) is the number of distinct cuboids whose edges are divisors of n.
%C A377304 Equivalently, a(n) is the number of unordered triples of divisors of n.
%C A377304 There are tau(n)*(tau(n) - 1)*(tau(n) - 2)/6 distinct cuboids with three different edges, (tau(n)*1*(tau(n) - 1) + tau(n)*(tau(n) - 1)*2)/3 distinct cuboids with two different edges and tau(n) distinct cuboids that are cubes.
%H A377304 Felix Huber, <a href="/A377304/b377304.txt">Table of n, a(n) for n = 1..10000</a>
%F A377304 a(n) = (tau(n)^3 + 3*tau(n)^2 + 2*tau(n))/6.
%F A377304 a(n) = binomial(tau(n) + 2, 3).
%e A377304 a(4) = 10, because there are 10 distinct cuboids whose edges are divisors of 4: (1, 1, 1), (1, 1, 2), (1, 1, 4), (1, 2, 2), (1, 2, 4), (1, 4, 4), (2, 2, 2), (2, 2, 4), (2, 4, 4), (4, 4, 4).
%p A377304 A377304:=proc(n)
%p A377304    local d;
%p A377304    d:=NumberTheory:-tau(n);
%p A377304    return (d^3+3*d^2+2*d)/6
%p A377304 end proc;
%p A377304 seq(A377304(n),n=1..68);
%t A377304 a[n_] := Binomial[DivisorSigma[0, n] + 2, 3]; Array[a, 70] (* _Amiram Eldar_, Nov 07 2024 *)
%Y A377304 Cf. A000005, A086222.
%K A377304 nonn
%O A377304 1,2
%A A377304 _Felix Huber_, Oct 25 2024