cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377305 Number of times A278603(n) has occurred among the terms of that sequence so far, i.e. among A278603(0..n).

This page as a plain text file.
%I A377305 #36 Nov 17 2024 07:06:00
%S A377305 1,1,1,2,2,1,3,3,4,2,1,1,2,3,3,2,1,1,2,3,3,2,1,1,2,3,4,4,4,4,5,5,6,5,
%T A377305 5,4,2,1,3,5,6,6,7,6,8,7,7,6,8,8,9,7,4,2,5,8,10,9,9,7,10,10,11,8,5,4,
%U A377305 3,2,4,5,6,9,7,6,8,10,12,11,11,9,12,12,13,11,14,13
%N A377305 Number of times A278603(n) has occurred among the terms of that sequence so far, i.e. among A278603(0..n).
%e A377305 Among the terms of A278603 the value of A278603(14) = 4 occurs 3 times, counting as far as n = 14:
%e A377305 .
%e A377305            n:  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19  ...
%e A377305  ------------------------------------------------------------------------------
%e A377305   A278603(n):  0, 1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 5, 4, 3, 4, 5, 6, 7, 6, 5, ...
%e A377305  ------------------------------------------------------------------------------
%e A377305                                              *     *     *
%e A377305        Count:                                1     2     3  -> therefore a(14) = 3.
%e A377305 .
%e A377305 The counting of equal altitude points is also explained with this diagram.
%e A377305 Up to and including A278603(14) = 4, climbing from origin, we touch 3 equal altitude
%e A377305 points at height 4 on the mountain at A278603(10) = 4, A278603(12) = 4, and A278603(14) = 4.
%e A377305 .
%e A377305   Altitude 4              /\
%e A377305   touched                /  \...
%e A377305   3 times  _________/\__/
%e A377305   reaching         /  \/
%e A377305   n = 14      /\  /
%e A377305            /\/  \/
%e A377305           /
%e A377305 .
%e A377305 An array as a histogram that shows in rows the equal altitude points on the prime mountain, stacked into columns. The prime mountain is squashed horizontally like a concertina to bring its equal altitude points close together, left-justified, and so to create a compact visual form for analysis. The number of equal altitude points, a(n), so far as n, can be read from the column headings, here in the range of n = 0, ..., 186:
%e A377305 .
%e A377305  Al-|
%e A377305  ti-|                                 - a(n) -
%e A377305  tu-|
%e A377305  de |  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  ...
%e A377305  ------------------------------------------------------------------------------------
%e A377305   . | ...
%e A377305  28 | 186 ...
%e A377305  27 | 157 185 ...
%e A377305  26 | 156 158 184 ...
%e A377305  25 | 155 159 167 179 183 ...
%e A377305  24 | 154 160 166 168 178 180 182 ...
%e A377305  23 | 149 153 161 165 169 177 181 ...
%e A377305  22 | 148 150 152 162 164 170 176 ...
%e A377305  21 | 147 151 163 171 175 ...
%e A377305  20 | 146 172 174 ...
%e A377305  19 | 145 173 ...
%e A377305  18 | 144 ...
%e A377305  17 | 143 ...
%e A377305  16 | 142 ...
%e A377305  15 | 137 141 ...
%e A377305  14 | 136 138 140 ...
%e A377305  13 | 127 135 139 ...
%e A377305  12 | 126 128 134 ...
%e A377305  11 | 125 129 133 ...
%e A377305  10 | 124 130 132 ...
%e A377305   9 |  23  67 123 131 ...
%e A377305   8 |  22  24  66  68 122 ...
%e A377305   7 |  17  21  25  65  69  73  97 121 ...
%e A377305   6 |  16  18  20  26  64  70  72  74  96  98 120 ...
%e A377305   5 |  11  15  19  27  31  47  59  63  71  75  83  95  99 103 119 ...
%e A377305   4 |  10  12  14  28  30  32  46  48  58  60  62  76  82  84  94 100 102 104 118 ...
%e A377305   3 |   5   9  13  29  33  41  45  49  57  61  77  81  85  93 101 105 109 117 ...
%e A377305   2 |   2   4   6   8  34  40  42  44  50  56  78  80  86  92 106 108 110 116 ...
%e A377305   1 |   1   3   7  35  39  43  51  55  79  87  91 107 111 115 ...
%e A377305   0 |   0  36  38  52  54  88  90 112 114 ...
%e A377305  -1 |  37  53  89 113 ...
%e A377305   . | ...
%e A377305 .
%Y A377305 Cf. A278603.
%K A377305 nonn
%O A377305 0,4
%A A377305 _Tamas Sandor Nagy_, Oct 23 2024