A377311 Least positive integer k with k*n primitive practical.
1, 1, 2, 5, 4, 1, 4, 11, 34, 2, 6, 17, 6, 2, 2, 17, 12, 17, 12, 1, 2, 3, 12, 31, 188, 3, 82, 1, 12, 1, 16, 37, 2, 6, 4, 41, 18, 6, 2, 47, 20, 1, 20, 2, 158, 6, 24, 67, 236, 94, 4, 2, 24, 41, 4, 59, 4, 6, 24, 79, 24, 8, 202, 67, 4, 1, 30, 3, 4, 2, 30, 97, 30, 9, 158, 3, 4, 1, 36, 97, 254, 10, 36, 101, 4, 10, 4, 1, 36, 79, 4, 3, 6, 12, 4, 127, 42, 118, 298, 47
Offset: 1
Keywords
Examples
a(9) = 34. Consider the following sequence of 16 even multiples of 9 namely (18, 36, 54, . . . , 288, 306), all are practical numbers but only 9*34 = 306 is a primitive practical number. This is because 306 when divided by 3 is no longer practical whereas the other 15 even multiples remain practical when divided by 3.
Links
- Frank M Jackson, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
PracticalQ[n_] := Module[{f,p,e,prod=1,ok=True},If[n<1||(n>1&&OddQ[n]),False,If[n==1,True,f=FactorInteger[n]; {p,e}=Transpose[f]; Do[If[p[[i]]>1+DivisorSigma[1,prod],ok=False; Break[]]; prod=prod*p[[i]]^e[[i]],{i,Length[p]}]; ok]]]; DivFreeQ[n_] := Module[{plst=First/@Select[FactorInteger[n],#[[2]]>1&],m,ok=False},Do[If[!PracticalQ[n/plst[[m]]],ok=True,ok=False; Break[]],{m,1,Length@plst}]; ok]; PPracticalQ[n_] := PracticalQ[n]&&(SquareFreeQ[n]||DivFreeQ[n]); lst={}; Do[m=1; While[!PPracticalQ[n*m],m++]; AppendTo[lst,m],{n,1,100}]; lst