cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377344 Decimal expansion of the volume of a truncated cuboctahedron (great rhombicuboctahedron) with unit edge length.

This page as a plain text file.
%I A377344 #4 Nov 01 2024 23:48:28
%S A377344 4,1,7,9,8,9,8,9,8,7,3,2,2,3,3,3,0,6,8,3,2,2,3,6,4,2,1,3,8,9,3,5,7,7,
%T A377344 3,0,9,9,9,7,5,4,0,6,2,5,5,2,7,7,2,7,3,0,2,4,4,7,3,5,1,6,3,3,1,8,7,0,
%U A377344 2,5,4,6,9,8,4,6,9,4,9,8,5,4,3,9,0,5,4,2,5,4
%N A377344 Decimal expansion of the volume of a truncated cuboctahedron (great rhombicuboctahedron) with unit edge length.
%H A377344 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GreatRhombicuboctahedron.html">Great Rhombicuboctahedron</a>.
%H A377344 Wikipedia, <a href="https://en.wikipedia.org/wiki/Truncated_cuboctahedron">Truncated cuboctahedron</a>.
%F A377344 Equals 22 + 14*sqrt(2) = 22 + 14*A002193.
%e A377344 41.798989873223330683223642138935773099975406255...
%t A377344 First[RealDigits[22 + 14*Sqrt[2], 10, 100]] (* or *)
%t A377344 First[RealDigits[PolyhedronData["TruncatedCuboctahedron", "Volume"], 10, 100]]
%Y A377344 Cf. A377343 (surface area), A377345 (circumradius), A377346 (midradius).
%Y A377344 Cf. A020775 (analogous for a cuboctahedron, with offset 1).
%Y A377344 Cf. A002193.
%K A377344 nonn,cons,easy
%O A377344 2,1
%A A377344 _Paolo Xausa_, Oct 26 2024