cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377345 Decimal expansion of the circumradius of a truncated cuboctahedron (great rhombicuboctahedron) with unit edge length.

This page as a plain text file.
%I A377345 #4 Nov 01 2024 23:48:38
%S A377345 2,3,1,7,6,1,0,9,1,2,8,9,2,7,6,6,5,1,3,7,7,9,1,4,7,4,6,3,3,4,0,2,9,4,
%T A377345 8,0,5,3,4,5,0,5,1,8,9,4,5,2,5,2,4,7,7,7,1,3,5,1,7,8,7,7,4,1,1,9,7,5,
%U A377345 1,3,2,9,1,0,5,0,8,5,7,9,0,6,9,2,8,9,6,3,6,2
%N A377345 Decimal expansion of the circumradius of a truncated cuboctahedron (great rhombicuboctahedron) with unit edge length.
%H A377345 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GreatRhombicuboctahedron.html">Great Rhombicuboctahedron</a>.
%H A377345 Wikipedia, <a href="https://en.wikipedia.org/wiki/Truncated_cuboctahedron">Truncated cuboctahedron</a>.
%F A377345 Equals sqrt(13 + 6*sqrt(2))/2 = sqrt(13 + A010524)/2.
%e A377345 2.3176109128927665137791474633402948053450518945...
%t A377345 First[RealDigits[Sqrt[13 + 6*Sqrt[2]]/2, 10, 100]] (* or *)
%t A377345 First[RealDigits[PolyhedronData["TruncatedCuboctahedron", "Circumradius"], 10, 100]]
%Y A377345 Cf. A377343 (surface area), A377344 (volume), A377346 (midradius).
%Y A377345 Cf. A010524.
%K A377345 nonn,cons,easy
%O A377345 1,1
%A A377345 _Paolo Xausa_, Oct 26 2024