cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377346 Decimal expansion of the midradius of a truncated cuboctahedron (great rhombicuboctahedron) with unit edge length.

This page as a plain text file.
%I A377346 #4 Nov 01 2024 23:48:46
%S A377346 2,2,6,3,0,3,3,4,3,8,4,5,3,7,1,4,6,2,3,5,9,2,0,2,5,8,0,3,4,3,2,5,3,7,
%T A377346 1,4,2,2,2,9,0,6,7,2,0,2,6,5,0,7,5,5,4,8,3,8,1,7,6,1,2,4,0,6,0,4,0,5,
%U A377346 6,7,4,5,9,8,9,1,5,3,0,4,7,0,7,7,5,8,7,6,2,7
%N A377346 Decimal expansion of the midradius of a truncated cuboctahedron (great rhombicuboctahedron) with unit edge length.
%H A377346 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GreatRhombicuboctahedron.html">Great Rhombicuboctahedron</a>.
%H A377346 Wikipedia, <a href="https://en.wikipedia.org/wiki/Truncated_cuboctahedron">Truncated cuboctahedron</a>.
%F A377346 Equals sqrt(12 + 6*sqrt(2))/2 = sqrt(12 + A010524)/2 = sqrt(3 + 3/sqrt(2)) = sqrt(3 + A230981).
%e A377346 2.26303343845371462359202580343253714222906720265...
%t A377346 First[RealDigits[Sqrt[3 + 3/Sqrt[2]], 10, 100]] (* or *)
%t A377346 First[RealDigits[PolyhedronData["TruncatedCuboctahedron", "Midradius"], 10, 100]]
%Y A377346 Cf. A377343 (surface area), A377344 (volume), A377345 (circumradius).
%Y A377346 Cf. A010527 (analogous for a cuboctahedron).
%Y A377346 Cf. A010524, A230981.
%K A377346 nonn,cons,easy
%O A377346 1,1
%A A377346 _Paolo Xausa_, Oct 26 2024