A377356 a(n) = Product{i = 1..(n-1)} prime(i)^e_i, where prime(i)^e_i is the smallest power of prime(i) which exceeds prime(n).
1, 4, 72, 1800, 529200, 64033200, 21643221600, 6254891042400, 2258015666306400, 17917354312141284000, 15068494976510819844000, 28961647344853795740168000, 39648495215104846368289992000, 66649120456591246745095476552000, 123234223724237215231681536144648000, 1905570801447880059127491593404692024000
Offset: 1
Keywords
Examples
For n = 5, a(5) = 529200, since prime(5) = 11, thus we have 2^4*3^3*5^2*7^2 = 16*27*25*49 = 529200. We may express this instead as 210*2520 = A002110(4)*A099795(5) = 210^2*6^1*2^1 = 529200. From _Michael De Vlieger_, Oct 26 2024: (Start) Table of first 12 terms showing exponents of prime power factors of a(n), where "." represents 0. Exponents of primes 1 1 1 1 2 2 3 n a(n) 2 3 5 7 1 3 7 9 3 9 1 ------------------------------------------------------- 1 1 . . . . . . . . . . . 2 4 2 . . . . . . . . . . 3 72 3 2 . . . . . . . . . 4 1800 3 2 2 . . . . . . . . 5 529200 4 3 2 2 . . . . . . . 6 64033200 4 3 2 2 2 . . . . . . 7 21643221600 5 3 2 2 2 2 . . . . . 8 6254891042400 5 3 2 2 2 2 2 . . . . 9 2258015666306400 5 3 2 2 2 2 2 2 . . . 10 17917354312141284000 5 4 3 2 2 2 2 2 2 . . 11 15068494976510819844000 5 4 3 2 2 2 2 2 2 2 . 12 28961647344853795740168000 6 4 3 2 2 2 2 2 2 2 2 (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..193
Programs
-
Mathematica
Array[Product[Prime[i]^(1 + Floor[Log[Prime[i], Prime[#]]]), {i, # - 1}] &, 12] (* Michael De Vlieger, Oct 26 2024 *)
Extensions
More terms from Michael De Vlieger, Oct 26 2024
Comments