cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377356 a(n) = Product{i = 1..(n-1)} prime(i)^e_i, where prime(i)^e_i is the smallest power of prime(i) which exceeds prime(n).

Original entry on oeis.org

1, 4, 72, 1800, 529200, 64033200, 21643221600, 6254891042400, 2258015666306400, 17917354312141284000, 15068494976510819844000, 28961647344853795740168000, 39648495215104846368289992000, 66649120456591246745095476552000, 123234223724237215231681536144648000, 1905570801447880059127491593404692024000
Offset: 1

Views

Author

David James Sycamore, Oct 26 2024

Keywords

Comments

a(n) is the product of powers of primes p, for all p < prime(n), where each prime power is the smallest which exceeds prime(n), (compare with A099795). Every term may be expressed as a product of primorial powers, (A002110(n-1)^2 being the greatest primorial power divisor of a(n)).
From Michael De Vlieger, Oct 26 2024: (Start)
This sequence adds 1 to all exponents of prime power factors of A099795(n) for n > 1.
Proper subset of A001694, all terms are powerful. (End)

Examples

			For n = 5, a(5) = 529200, since prime(5) = 11, thus we have 2^4*3^3*5^2*7^2 = 16*27*25*49 = 529200. We may express this instead as 210*2520 = A002110(4)*A099795(5) = 210^2*6^1*2^1 = 529200.
From _Michael De Vlieger_, Oct 26 2024: (Start)
Table of first 12 terms showing exponents of prime power factors of a(n), where "." represents 0.
                                    Exponents of primes
                                            1 1 1 1 2 2 3
   n                          a(n)  2 3 5 7 1 3 7 9 3 9 1
  -------------------------------------------------------
   1                            1   . . . . . . . . . . .
   2                            4   2 . . . . . . . . . .
   3                           72   3 2 . . . . . . . . .
   4                         1800   3 2 2 . . . . . . . .
   5                       529200   4 3 2 2 . . . . . . .
   6                     64033200   4 3 2 2 2 . . . . . .
   7                  21643221600   5 3 2 2 2 2 . . . . .
   8                6254891042400   5 3 2 2 2 2 2 . . . .
   9             2258015666306400   5 3 2 2 2 2 2 2 . . .
  10         17917354312141284000   5 4 3 2 2 2 2 2 2 . .
  11      15068494976510819844000   5 4 3 2 2 2 2 2 2 2 .
  12   28961647344853795740168000   6 4 3 2 2 2 2 2 2 2 2 (End)
		

Crossrefs

Programs

  • Mathematica
    Array[Product[Prime[i]^(1 + Floor[Log[Prime[i], Prime[#]]]), {i, # - 1}] &, 12] (* Michael De Vlieger, Oct 26 2024 *)

Formula

a(n) = A002110(n-1)*A099795(n); A007947(a(n)) = rad(a(n)) = A002110(n-1).

Extensions

More terms from Michael De Vlieger, Oct 26 2024