cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377358 E.g.f. satisfies A(x) = ( 1 - log(1 - x*A(x))/A(x) )^2.

This page as a plain text file.
%I A377358 #7 Oct 26 2024 14:46:34
%S A377358 1,2,4,22,194,2268,34272,624804,13432120,332078160,9286572624,
%T A377358 289821031344,9985648515504,376489542984384,15418392593403360,
%U A377358 681562973789926560,32345053760113660800,1640243700728870131200,88516191520113318169344,5064936155664187593030912
%N A377358 E.g.f. satisfies A(x) = ( 1 - log(1 - x*A(x))/A(x) )^2.
%F A377358 E.g.f.: B(x)^2, where B(x) is the e.g.f. of A377349.
%F A377358 a(n) = 2 * Sum_{k=0..floor((2*n+2)/3)} (2*n-2*k+1)!/(2*n-3*k+2)! * |Stirling1(n,k)|.
%o A377358 (PARI) a(n) = 2*sum(k=0, (2*n+2)\3, (2*n-2*k+1)!/(2*n-3*k+2)!*abs(stirling(n, k, 1)));
%Y A377358 Cf. A377325, A377359.
%Y A377358 Cf. A377349.
%K A377358 nonn
%O A377358 0,2
%A A377358 _Seiichi Manyama_, Oct 26 2024