cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377359 E.g.f. satisfies A(x) = ( 1 - log(1 - x*A(x))/A(x) )^3.

This page as a plain text file.
%I A377359 #9 Oct 26 2024 14:46:51
%S A377359 1,3,9,57,642,9402,177198,4051338,108926520,3371293704,118000461528,
%T A377359 4609447152120,198791258476176,9381618706074768,480921576177145392,
%U A377359 26610634173004959312,1580792845661466884352,100345182367660427554560,6778517964127816222982016
%N A377359 E.g.f. satisfies A(x) = ( 1 - log(1 - x*A(x))/A(x) )^3.
%F A377359 E.g.f.: B(x)^3, where B(x) is the e.g.f. of A377350.
%F A377359 a(n) = 3 * Sum_{k=0..floor((3*n+3)/4)} (3*n-3*k+2)!/(3*n-4*k+3)! * |Stirling1(n,k)|.
%o A377359 (PARI) a(n) = 3*sum(k=0, (3*n+3)\4, (3*n-3*k+2)!/(3*n-4*k+3)!*abs(stirling(n, k, 1)));
%Y A377359 Cf. A377325, A377358.
%Y A377359 Cf. A377350.
%K A377359 nonn
%O A377359 0,2
%A A377359 _Seiichi Manyama_, Oct 26 2024