cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377360 E.g.f. satisfies A(x) = ( 1 - log(1 - x*A(x)) )^2.

This page as a plain text file.
%I A377360 #15 Aug 27 2025 05:43:50
%S A377360 1,2,12,130,2082,44488,1192964,38557860,1459988440,63414711072,
%T A377360 3108861424032,169829819311392,10230860299538400,673850170929176928,
%U A377360 48176129912775680160,3715759452364764485280,307545698210584533055488,27190399275422185989742080,2557448587458299889542868480
%N A377360 E.g.f. satisfies A(x) = ( 1 - log(1 - x*A(x)) )^2.
%H A377360 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A377360 E.g.f.: B(x)^2, where B(x) is the e.g.f. of A367080.
%F A377360 a(n) = 2 * (2*n+1)! * Sum_{k=0..n} |Stirling1(n,k)|/(2*n-k+2)!.
%F A377360 E.g.f.: (1/x) * Series_Reversion( x/(1 - log(1-x))^2 ).
%F A377360 a(n) ~ sqrt(2) * LambertW(-1, -2*exp(-3))^n * (2 + LambertW(-1, -2*exp(-3)))^(n+2) * n^(n-1) / (exp(n) * sqrt(-1 - LambertW(-1, -2*exp(-3)))). - _Vaclav Kotesovec_, Aug 27 2025
%t A377360 nmax = 20; CoefficientList[1/x * InverseSeries[Series[x/(1 - Log[1 - x])^2, {x, 0, nmax + 1}], x], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Aug 27 2025 *)
%o A377360 (PARI) a(n) = 2*(2*n+1)!*sum(k=0, n, abs(stirling(n, k, 1))/(2*n-k+2)!);
%Y A377360 Cf. A138013, A377361.
%Y A377360 Cf. A097629, A367080, A376392.
%K A377360 nonn,changed
%O A377360 0,2
%A A377360 _Seiichi Manyama_, Oct 26 2024