cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377361 E.g.f. satisfies A(x) = ( 1 - log(1 - x*A(x)) )^3.

This page as a plain text file.
%I A377361 #15 Oct 27 2024 09:04:26
%S A377361 1,3,27,435,10308,324942,12831540,610024398,33948639024,2165995595208,
%T A377361 155913776865216,12501945620113320,1105228405532295216,
%U A377361 106806396107364409440,11201958792185117156640,1267313834232739887340464,153842580381390055963315200,19946923686925035463312117632
%N A377361 E.g.f. satisfies A(x) = ( 1 - log(1 - x*A(x)) )^3.
%H A377361 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A377361 E.g.f.: B(x)^3, where B(x) is the e.g.f. of A367152.
%F A377361 a(n) = 3 * (3*n+2)! * Sum_{k=0..n} |Stirling1(n,k)|/(3*n-k+3)!.
%F A377361 E.g.f.: (1/x) * Series_Reversion( x/(1 - log(1-x))^3 ).
%o A377361 (PARI) a(n) = 3*(3*n+2)!*sum(k=0, n, abs(stirling(n, k, 1))/(3*n-k+3)!);
%Y A377361 Cf. A138013, A377360.
%Y A377361 Cf. A136719, A367152, A376393.
%K A377361 nonn
%O A377361 0,2
%A A377361 _Seiichi Manyama_, Oct 26 2024