A377365 a(n) = least k such that 2n*5^k+1 is prime, or 0 if no prime is reached.
1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 4, 2, 1, 2, 1, 3, 8, 1, 1, 1036, 1, 3, 2, 1, 1, 2, 1, 1, 2, 4, 1, 2, 1, 3, 6, 2, 257, 2, 2, 1, 40, 1, 1, 4, 2, 1, 2, 10, 1, 4, 2, 1, 6, 1, 3, 2, 1, 15, 4, 1, 79, 48, 1, 1, 2, 1, 5, 6, 1, 1, 6, 4, 3, 2, 1, 1, 2, 3, 3, 2, 1, 1, 6
Offset: 1
Keywords
Examples
a(20) = 1036 because 40*5^k+1 is prime for k=1036 and not prime for k=1..1035.
Programs
-
Mathematica
f[n_, k_] := 2 n*5^k + 1; s[n_] := Select[Range[5000], PrimeQ[f[n, #]] &, 1]; Flatten[Table[s[n], {n, 1, 500}]]