cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377366 Rectangular array by antidiagonals: R(m,n) = least k such that 2n*prime(m)^k - 1 is prime.

This page as a plain text file.
%I A377366 #4 Nov 04 2024 22:29:37
%S A377366 1,1,1,1,1,4,2,1,1,1,1,1,1,1,2,1,1,2,4,1,2,4,2,3,1,2,2,2,1,1,1,1,1,1,
%T A377366 1,1,2,1,2,2,1,2,1,1,6,2,1,1,1,2,1,2,1,5,1,1,1,1,1,1,1,2,1,1,3,1,1,2,
%U A377366 2,1,4,10,4,6,2,1,2,1
%N A377366 Rectangular array by antidiagonals: R(m,n) = least k such that 2n*prime(m)^k - 1 is prime.
%e A377366 Corner:
%e A377366    1    1    1     2    1    1     4    1    2    2     1    1     2    3    1    2
%e A377366    1    1    1     1    1    2     1    1    1    1     2    1     2    1    1    3
%e A377366    4    1    1     2    3    1     2    1    1    2     1    2     4    1    1    8
%e A377366    1    1    4     1    1    2     1    1    1    3     1    1     2    1    1    2
%e A377366    2    1    2     1    1    2     1    4    1    1     1    3    18    1    2    1
%e A377366    2    2    1     2    1    1    10    1    1    1     2    1     2    6    1    2
%e A377366    2    1    1     2    2    4     1    4    2    1     3    7     1    4    1    8
%e A377366    1    1    1     1    6    6     1    2    3    1     1    1    11    1    6    1
%e A377366    6    5    1     2    1    1     2    4    7    1     2    1     2    1    3    4
%e A377366    1    3    1    10    1    1     2    1    2    6     2    1     2    5    8    2
%e A377366    1    2    1     1    1    1     1    1    9    1     2    1     1    2    3    2
%e A377366    1    3    4     1    3    14    1    1    2    1     8    7     2    1    1    3
%e A377366    2    1    1     1    4    2     3    1    1    2    14    7     1    6    2    1
%e A377366    2    1    1     1    1    1     1    1    2    7     3    1     4    3    1    3
%e A377366    4    1    1     1    2    2     1    3    1    2     1    7     8    1    1    1
%e A377366    1    1    8    15    1    2     4    1    9    4     1    1     2    1    1    2
%t A377366 f[m_, n_, k_] := 2 n*Prime[m]^k - 1;
%t A377366 s[m_, n_] := Select[Range[20], PrimeQ[f[m, n, #]] &, 1]
%t A377366 u[m_] := Flatten[Table[s[m, n], {n, 1, 60}]]
%t A377366 Column[Table[Take[u[m], 16], {m, 1, 16}]]
%t A377366 r[m_] := Take[u[m], 12]; w[m_, n_] := r[m][[n]];
%t A377366 Table[w[m, n], {m, 1, 16}, {n, 1, 12}] (* array *)
%t A377366 Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten  (* sequence *)
%Y A377366 Cf. A000040, A377367.
%K A377366 nonn,tabl
%O A377366 1,6
%A A377366 _Clark Kimberling_, Oct 31 2024