A377367 Rectangular array by antidiagonals: R(m,n) = least k such that 2n*prime(m)^k + 1 is prime.
1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 6, 4, 1, 1, 1, 10, 1, 1, 3, 1, 3, 1, 1, 2, 1, 1, 14, 1, 1, 2, 2, 3, 8, 3, 2, 1, 1, 1, 2, 1, 3, 3, 1, 11, 1, 1, 1, 1, 4, 2, 1, 1, 1, 2, 2, 4, 6, 5, 4, 1, 1
Offset: 1
Examples
Corner: 1 1 1 2 1 1 1 3 2 1 1 1 1 3 2 1 2 1 1 2 1 1 2 3 1 4 2 1 2 1 1 1 1 4 1 1 3 3 1 1 1 8 1 3 11 1 1 1 10 2 8 1 2 3 2 1 1 1 1 8 1 1 1 1 3 11 2 1 2 4 1 8 1 1 1 6 1 1 2 1 4 1 13 2 1 1 2 3 3 1 3 14 1 1 6 1 1 3 1 1 8 1 4 2 3 1 1 1 5 4 7 1 14 2 1 2 1 2 1 6 1 1 4 1 3 2 1 2 3 2 5 1 6 1 2 4 1 1 2 2 1 3 5 1 5 1 1 1 1 4 1 1 2 3 1 2 3 2 3 1 9 1 3 1 1 1 3 2 2 4 1 1 7 1 11 4 1 1 10 3 1 1 2 3 3 1 1 3 1 1 1 2 1 1 2 2 1 2 3 1 8 1 1 1 2 3 1 1 2 1 1 16 1 4 11 1 4 3 3 2 18 1 2 4 2
Programs
-
Mathematica
f[m_, n_, k_] := 2 n*Prime[m]^k + 1; s[m_, n_] := Select[Range[20], PrimeQ[f[m, n, #]] &, 1] u[m_] := Flatten[Table[s[m, n], {n, 1, 60}]] Column[Table[Take[u[m], 16], {m, 2, 16}]] r[m_] := Take[u[m], 12]; w[m_, n_] := r[m][[n]]; Table[w[m, n], {m, 1, 16}, {n, 1, 12}] (* array *) Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *)