A377377 a(n) is the quotient of the practical number A005153(n) divided by its largest divisor that is primitive practical.
1, 1, 2, 1, 4, 2, 8, 3, 1, 4, 1, 1, 16, 6, 2, 1, 8, 9, 2, 2, 32, 1, 12, 1, 4, 2, 1, 3, 16, 5, 1, 18, 4, 4, 3, 64, 2, 1, 24, 5, 2, 8, 27, 4, 2, 6, 32, 7, 3, 10, 1, 2, 1, 36, 1, 8, 1, 3, 8, 6, 128, 1, 3, 9, 1, 1, 2, 48, 7, 10, 1, 1, 1, 3, 16, 54, 1, 8, 1, 1, 1, 4, 12, 1, 1, 9, 1, 64, 1, 14, 6, 20, 2, 1, 4, 2, 72, 2, 16, 15, 2, 1, 1, 1, 6, 1, 16, 81, 1, 25, 12
Offset: 1
Keywords
Examples
a(13) = 16 because the practical number A005153(13) = 32 = 2*16 and 2 is its largest primitive practical factor. a(14) = 6 because the practical number A005153(14) = 36 = 6*6 and 6 is its largest primitive practical factor.
Links
- Frank M Jackson, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
lst1=Last/@ReadList["https://oeis.org/A267124/b267124.txt", {Number, Number}]; lst2=Last/@ReadList["https://oeis.org/A005153/b005153.txt", {Number, Number}]; getm[p_] := Module[{plst=Select[lst1, #<=p &], k, l, n=0}, l=Length@plst; If[Last@plst==p, Return[1]]; While[!IntegerQ[k=p/plst[[l-n]]], n++]; k]; Table[getm[lst2[[n]]], {n, 1, 100}]
Comments