A377386 Factorial-base Niven numbers (A118363) k such that m = k/f(k) and m/f(m) are also factorial-base Niven numbers, where f(k) = A034968(k) is the sum of digits in the factorial-base representation of k.
1, 2, 4, 6, 8, 12, 16, 18, 24, 36, 40, 48, 54, 72, 80, 96, 108, 120, 135, 144, 180, 192, 240, 280, 288, 360, 384, 432, 480, 576, 594, 600, 720, 840, 864, 1200, 1215, 1225, 1296, 1344, 1440, 1680, 1728, 1800, 2160, 2240, 2352, 2400, 2520, 2592, 2704, 2730, 2880, 3000
Offset: 1
Examples
16 is a term since 16/f(16) = 4 is an integer, 4/f(4) = 2 is an integer, and 2/f(2) = 2 is an integer.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
fdigsum[n_] := Module[{k = n, m = 2, r, s = 0}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, s += r; m++]; s]; q[k_] := Module[{f = fdigsum[k], f2, m, n}, IntegerQ[m = k/f] && Divisible[m, f2 = fdigsum[m]] && Divisible[n = m/f2, fdigsum[n]]]; Select[Range[3000], q]
-
PARI
fdigsum(n) = {my(k = n, m = 2, r, s = 0); while([k, r] = divrem(k, m); k != 0 || r != 0, s += r; m++); s;} is(k) = {my(f = fdigsum(k), f2, m); if(k % f, return(0)); m = k/f; f2 = fdigsum(m); !(m % f2) && !((m/f2) % fdigsum(m/f2)); }