cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377404 In the binary expansion of n, replace the first, third, fifth, etc. 1's by 0's.

This page as a plain text file.
%I A377404 #12 Oct 31 2024 01:28:24
%S A377404 0,0,0,1,0,1,2,2,0,1,2,2,4,4,4,5,0,1,2,2,4,4,4,5,8,8,8,9,8,9,10,10,0,
%T A377404 1,2,2,4,4,4,5,8,8,8,9,8,9,10,10,16,16,16,17,16,17,18,18,16,17,18,18,
%U A377404 20,20,20,21,0,1,2,2,4,4,4,5,8,8,8,9,8,9,10,10
%N A377404 In the binary expansion of n, replace the first, third, fifth, etc. 1's by 0's.
%C A377404 Each 1 in the binary expansion of n appears either in a(n) or in A265263(n).
%H A377404 Rémy Sigrist, <a href="/A377404/b377404.txt">Table of n, a(n) for n = 0..8192</a>
%H A377404 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A377404 a(n) = n - A265263(n).
%F A377404 a(2*n) = 2*a(n).
%F A377404 A000120(a(n)) = floor(A000120(n)/2).
%e A377404 The first terms, in decimal and in binary, are:
%e A377404   n   a(n)  bin(n)  bin(a(n))
%e A377404   --  ----  ------  ---------
%e A377404    0     0       0          0
%e A377404    1     0       1          0
%e A377404    2     0      10          0
%e A377404    3     1      11          1
%e A377404    4     0     100          0
%e A377404    5     1     101          1
%e A377404    6     2     110         10
%e A377404    7     2     111         10
%e A377404    8     0    1000          0
%e A377404    9     1    1001          1
%e A377404   10     2    1010         10
%e A377404   11     2    1011         10
%e A377404   12     4    1100        100
%e A377404   13     4    1101        100
%e A377404   14     4    1110        100
%e A377404   15     5    1111        101
%o A377404 (PARI) a(n) = { my (b = binary(n), h = 0); for (i = 1, #b, if (b[i] && h++%2==1, b[i]
%o A377404 = 0;);); fromdigits(b, 2); }
%Y A377404 Cf. A000120, A265263.
%K A377404 nonn,base,easy
%O A377404 0,7
%A A377404 _Rémy Sigrist_, Oct 28 2024