cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377411 E.g.f. satisfies A(x) = 1/(1 + A(x)^2 * log(1 - x))^2.

This page as a plain text file.
%I A377411 #24 Aug 27 2025 05:51:09
%S A377411 1,2,24,550,19094,895148,53013508,3799302288,319804780896,
%T A377411 30933514927968,3381310375415952,412231069711808400,
%U A377411 55460578942028274960,8162361371407306334880,1304519342283397587813600,224999768419814742497623680,41656460732290876726281018240
%N A377411 E.g.f. satisfies A(x) = 1/(1 + A(x)^2 * log(1 - x))^2.
%F A377411 E.g.f.: B(x)^2, where B(x) is the e.g.f. of A377448.
%F A377411 a(n) = 2 * Sum_{k=0..n} (5*k+1)!/(4*k+2)! * |Stirling1(n,k)|.
%F A377411 a(n) ~ 625 * n^(n-1) / (256 * (exp(256/3125) - 1)^(n - 1/2) * exp(2869*n/3125)). - _Vaclav Kotesovec_, Aug 27 2025
%t A377411 Table[2 * Sum[(5*k+1)!/(4*k+2)! * Abs[StirlingS1[n,k]], {k,0,n}], {n,0,20}] (* _Vaclav Kotesovec_, Aug 27 2025 *)
%o A377411 (PARI) a(n) = 2*sum(k=0, n, (5*k+1)!/(4*k+2)!*abs(stirling(n, k, 1)));
%Y A377411 Cf. A377448, A377449.
%Y A377411 Cf. A377492.
%K A377411 nonn,changed
%O A377411 0,2
%A A377411 _Seiichi Manyama_, Oct 29 2024