This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377414 #16 Jul 02 2025 17:30:36 %S A377414 0,1,2,2,4,5,4,5,8,8,10,10,8,8,10,10,16,17,16,17,20,21,20,21,16,17,16, %T A377414 17,20,21,20,21,32,32,34,34,32,32,34,34,40,40,42,42,40,40,42,42,32,32, %U A377414 34,34,32,32,34,34,40,40,42,42,40,40,42,42,64,65,64,65 %N A377414 a(n) is the largest term of A126684, say b, such that n AND b = b (where AND denotes the bitwise AND operator). %C A377414 For any n > 0 with binary expansion (b_1 = 1, b_2, ..., b_k), the binary expansion of a(n) is (c_1, ..., c_k) where c_i = b_i when i is odd, c_i = 0 when i is even. %C A377414 For any n, the value c = n - a(n) also belongs to A126684 and satisfies n AND c = c (see A377415). %H A377414 Rémy Sigrist, <a href="/A377414/b377414.txt">Table of n, a(n) for n = 0..8191</a> %H A377414 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A377414 a(n) <= n with equality iff n belongs to A126684. %F A377414 a(a(n)) = a(n). %F A377414 a(2*n) = 2*a(n). %F A377414 a(n) = n AND A000975(A070939(n)). - _Alan Michael Gómez Calderón_, Jun 27 2025 %e A377414 The first terms, in decimal and in binary, are: %e A377414 n a(n) bin(n) bin(a(n)) %e A377414 -- ---- ------ --------- %e A377414 0 0 0 0 %e A377414 1 1 1 1 %e A377414 2 2 10 10 %e A377414 3 2 11 10 %e A377414 4 4 100 100 %e A377414 5 5 101 101 %e A377414 6 4 110 100 %e A377414 7 5 111 101 %e A377414 8 8 1000 1000 %e A377414 9 8 1001 1000 %e A377414 10 10 1010 1010 %e A377414 11 10 1011 1010 %e A377414 12 8 1100 1000 %e A377414 13 8 1101 1000 %e A377414 14 10 1110 1010 %e A377414 15 10 1111 1010 %o A377414 (PARI) a(n) = { my (v = 0, x = exponent(n), y); while (n, n -= 2^y = exponent(n); if (x%2 == y%2, v += 2^y;);); return (v); } %Y A377414 See A063694, A063695 and A374356 for similar sequences. %Y A377414 Cf. A000975, A070939, A126684, A371442, A377415. %K A377414 nonn,base,easy %O A377414 0,3 %A A377414 _Rémy Sigrist_, Oct 27 2024