This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377417 #10 May 30 2025 23:16:10 %S A377417 1272,4632,31632,266712,805152,4897392,94177392,2928675264 %N A377417 Numbers t such that t + s(t) = s(s(t)), where s(t) is the sum of aliquot divisors of t (A001065(t)). %C A377417 Equivalently, numbers t which satisfy the equation t = sigma(sigma(t) - t) - 2*(sigma(t) - t), where sigma(t) is the sum of divisors of t (A000203(t)). %C A377417 The sum of aliquot divisors is also called the sum of aliquot parts, the aliquot sum or the sum of proper divisors (A001065). %C A377417 a(9) > 10^10 (if it exists). %C A377417 Let s^[m](t) denote m-fold iteration of s(t) (i.e., s^[0](t) = t and s^[m](t) = s(s^[m-1](t))). %C A377417 The following table shows consecutive solutions t (t <= z) of the equation s^[m](t) = Sum_{i=0..m-1} s^[i](t) for m = 3,4,5,...,30 (solutions for m = 1 are perfect numbers, solutions for m = 2 are in the data section): %C A377417 --------------------------------------------------------------------------------------------- %C A377417 m | z | t | (m+1)-tuple (s^[0](t), s^[1](t),...,s^[m](t)) %C A377417 --------------------------------------------------------------------------------------------- %C A377417 3 | 10^9 | 8880 | 8880, 19392, 32424, 60696 = 8880+19392+32424 %C A377417 | | 1468584 | 1468584, 2933016, 4399584, 8801184 = 1468584+2933016+4399584 %C A377417 4 | 10^9 | 285816 | 285816, 428784, 679032, 1160208, 2553840 = 285816+428784+ %C A377417 | | | +679032+1160208 %C A377417 5 | 10^9 | 3280592 | 3280592, 4415344, 4196952, 7343928, 12546072, 31782888 = %C A377417 | | | = 3280592+4415344+4196952+7343928+12546072 %C A377417 6,...,30 | 10^8 | - | %C A377417 --------------------------------------------------------------------------------------------- %e A377417 a(1) = 1272 because s(1272) = 1968, s(1968) = 3240 = 1272 + 1968. %e A377417 a(2) = 4632 because s(4632) = 7008, s(7008) = 11640 = 4632 + 7008. %e A377417 a(3) = 31632 because s(31632) = 50208, s(50208) = 81840 = 31632 + 50208. %o A377417 (Maxima) %o A377417 (n:1, for t:2 thru 100000000 do %o A377417 (x:divsum(t)-t, y:divsum(x)-x, %o A377417 if t+x=y then %o A377417 (print(n, "" , t ), n:n+1))); %o A377417 (PARI) isok(t) = t == sigma(sigma(t) - t) - 2*(sigma(t) - t); \\ _Michel Marcus_, Oct 29 2024 %Y A377417 Cf. A000203, A000396, A001065, A003416, A051027, A063990. %K A377417 nonn,more %O A377417 1,1 %A A377417 _Lechoslaw Ratajczak_, Oct 27 2024