cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377428 Expansion of e.g.f. (1/x) * Series_Reversion( x*(2 - exp(x))^4 ).

This page as a plain text file.
%I A377428 #9 Oct 28 2024 09:32:10
%S A377428 1,4,56,1432,54184,2734104,173032680,13192623448,1177932112040,
%T A377428 120610734752920,13935516914366824,1793837540679492312,
%U A377428 254604546529825454376,39504947952102355425304,6652925600854130108675048,1208610940763303680263653464,235601431979292206398224418216
%N A377428 Expansion of e.g.f. (1/x) * Series_Reversion( x*(2 - exp(x))^4 ).
%H A377428 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A377428 E.g.f. A(x) satisfies A(x) = 1/(2 - exp(x*A(x)))^4.
%F A377428 E.g.f.: B(x)^4, where B(x) is the e.g.f. of A377424.
%F A377428 a(n) = (4/(4*n+4)!) * Sum_{k=0..n} (4*n+k+3)! * Stirling2(n,k).
%o A377428 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(2-exp(x))^4)/x))
%o A377428 (PARI) a(n) = 4*sum(k=0, n, (4*n+k+3)!*stirling(n, k, 2))/(4*n+4)!;
%Y A377428 Cf. A052894, A376389, A376390.
%Y A377428 Cf. A377424, A377425.
%K A377428 nonn
%O A377428 0,2
%A A377428 _Seiichi Manyama_, Oct 28 2024