cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377429 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + log(1-x))^4 ).

This page as a plain text file.
%I A377429 #9 Oct 28 2024 08:43:33
%S A377429 1,4,56,1436,54540,2763696,175688744,13457185080,1207241712536,
%T A377429 124205544781728,14420516981211360,1865347268407271040,
%U A377429 266056506383725529568,41485848013549310521536,7021170794004780911946048,1281852242007649764308226240,251124461130948243588667169280
%N A377429 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + log(1-x))^4 ).
%H A377429 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A377429 E.g.f. A(x) satisfies A(x) = 1/(1 + log(1 - x*A(x)))^4.
%F A377429 E.g.f.: B(x)^4, where B(x) is the e.g.f. of A377426.
%F A377429 a(n) = (4/(4*n+4)!) * Sum_{k=0..n} (4*n+k+3)! * |Stirling1(n,k)|.
%o A377429 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+log(1-x))^4)/x))
%o A377429 (PARI) a(n) = 4*sum(k=0, n, (4*n+k+3)!*abs(stirling(n, k, 1)))/(4*n+4)!;
%Y A377429 Cf. A052802, A376392, A376393.
%Y A377429 Cf. A377426, A377427.
%K A377429 nonn
%O A377429 0,2
%A A377429 _Seiichi Manyama_, Oct 28 2024