This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377435 #14 Nov 06 2024 10:19:50 %S A377435 1,0,1,2,3,3,5,7,8,11,16,24,32,42,61,82,118,166,231,322,453,635,892, %T A377435 1253,1767,2487,3505,4936,6959,9816,13850,19538,27578,38933,54972, %U A377435 77641,109668,154922,218879,309277,437047,617658,872968,1233896,1744153,2465547,3485478 %N A377435 Number of perfect-powers x in the range 2^n <= x < 2^(n+1). %C A377435 Perfect-powers (A001597) are numbers with a proper integer root, complement A007916. %C A377435 Also the number of perfect-powers with n bits. %F A377435 For n != 1, a(n) = A377467(n) + 1. %e A377435 The perfect-powers in each prescribed range (rows): %e A377435 1 %e A377435 . %e A377435 4 %e A377435 8 9 %e A377435 16 25 27 %e A377435 32 36 49 %e A377435 64 81 100 121 125 %e A377435 128 144 169 196 216 225 243 %e A377435 256 289 324 343 361 400 441 484 %e A377435 512 529 576 625 676 729 784 841 900 961 1000 %e A377435 Their binary expansions (columns): %e A377435 1 . 100 1000 10000 100000 1000000 10000000 100000000 %e A377435 1001 11001 100100 1010001 10010000 100100001 %e A377435 11011 110001 1100100 10101001 101000100 %e A377435 1111001 11000100 101010111 %e A377435 1111101 11011000 101101001 %e A377435 11100001 110010000 %e A377435 11110011 110111001 %e A377435 111100100 %t A377435 perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1; %t A377435 Table[Length[Select[Range[2^n,2^(n+1)-1],perpowQ]],{n,0,15}] %o A377435 (Python) %o A377435 from sympy import mobius, integer_nthroot %o A377435 def A377435(n): %o A377435 if n==0: return 1 %o A377435 def f(x): return int(1-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) %o A377435 return f((1<<n+1)-1)-f((1<<n)-1) # _Chai Wah Wu_, Nov 05 2024 %Y A377435 The union of all numbers counted is A001597, without powers of two A377702. %Y A377435 The version for squarefree numbers is A077643. %Y A377435 These are the first differences of A188951. %Y A377435 The version for prime-powers is A244508. %Y A377435 For primes instead of powers of 2 we have A377432, zeros A377436. %Y A377435 Not counting powers of 2 gives A377467. %Y A377435 The version for non-perfect-powers is A377701. %Y A377435 A000040 lists the primes, differences A001223. %Y A377435 A000961 lists the powers of primes, differences A057820. %Y A377435 A001597 lists the perfect-powers, differences A053289. %Y A377435 A007916 lists the non-perfect-powers, differences A375706. %Y A377435 A081676 gives the greatest perfect-power <= n. %Y A377435 A131605 lists perfect-powers that are not prime-powers. %Y A377435 A377468 gives the least perfect-power > n. %Y A377435 Cf. A000015, A013597, A014210, A014234, A023055, A031218, A045542, A052410, A065514, A069623, A216765, A345531, A377434. %K A377435 nonn %O A377435 0,4 %A A377435 _Gus Wiseman_, Nov 04 2024 %E A377435 a(26)-a(46) from _Chai Wah Wu_, Nov 05 2024