cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377442 Square array read by rising antidiagonals: T(n, k) = A377441(-n, k), an extension of A377441 into the domain of negative n.

This page as a plain text file.
%I A377442 #15 Nov 17 2024 07:36:46
%S A377442 1,1,1,1,1,2,1,1,2,5,1,1,2,4,14,1,1,2,3,9,42,1,1,2,2,6,22,132,1,1,2,1,
%T A377442 5,12,57,429,1,1,2,0,6,6,26,154,1430,1,1,2,-1,9,-2,15,59,429,4862,1,1,
%U A377442 2,-2,14,-18,24,24,138,1223,16796,1,1,2,-3,21,-48,77,-23,53,332,3550,58786,1,1,2,-4,30,-98,222,-226,102,107,814,10455,208012,1,1,2
%N A377442 Square array read by rising antidiagonals: T(n, k) = A377441(-n, k), an extension of A377441 into the domain of negative n.
%C A377442 The main entry for this array is A377441.
%e A377442 The array begins:
%e A377442   [ 0] 1, 1, 2,  5, 14,  42,  132,   429,   1430, ... = A000108
%e A377442   [-1] 1, 1, 2,  4,  9,  22,   57,   154,    429, ... = A105633
%e A377442   [-2] 1, 1, 2,  3,  6,  12,   26,    59,    138, ... = A152172
%e A377442   [-3] 1, 1, 2,  2,  5,   6,   15,    24,     53, ...
%e A377442   [-4] 1, 1, 2,  1,  6,  -2,   24,   -23,    102, ...
%e A377442   [-5] 1, 1, 2,  0,  9, -18,   77,  -226,    765, ...
%e A377442   [-6] 1, 1, 2, -1, 14, -48,  222,  -921,   3914, ...
%e A377442   [-7] 1, 1, 2, -2, 21, -98,  531, -2756,  14373, ...
%e A377442 Row index written as [m] is corresponding to A377441(m, k).
%Y A377442 Cf. A377441 (The main entry for this sequence).
%Y A377442 Cf. A105633 (row -1), A152172 (row -2).
%Y A377442 Cf. A000108 (row 0), A254316 (row 1).
%Y A377442 Cf. A000012 (Hankel transform of row 0), A006720 (Hankel transform of row 1).
%Y A377442 Cf. A330025 (Hankel transform of row -1), A328380 (Hankel transform of row -2).
%Y A377442 Cf. A371965, A377443.
%K A377442 sign,tabl
%O A377442 0,6
%A A377442 _Thomas Scheuerle_, Nov 04 2024