cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377445 E.g.f. satisfies A(x) = 1/(1 + A(x) * log(1 - x))^2.

This page as a plain text file.
%I A377445 #11 Aug 27 2025 04:39:00
%S A377445 1,2,16,226,4678,128728,4437416,184176816,8949477600,498611374704,
%T A377445 31343763192144,2194986671431200,169478318264408832,
%U A377445 14304849733469090976,1310439414650613267552,129495512412669053694720,13731040497246647099309568,1555129289690056322821075968
%N A377445 E.g.f. satisfies A(x) = 1/(1 + A(x) * log(1 - x))^2.
%F A377445 E.g.f.: B(x)^2, where B(x) is the e.g.f. of A367158.
%F A377445 a(n) = 2 * Sum_{k=0..n} (3*k+1)!/(2*k+2)! * |Stirling1(n,k)|.
%F A377445 a(n) ~ 27 * n^(n-1) / (2^(5/2) * (exp(4/27) - 1)^(n - 1/2) * exp(23*n/27)). - _Vaclav Kotesovec_, Aug 27 2025
%t A377445 Table[2*Sum[(3*k+1)!/(2*k+2)! * Abs[StirlingS1[n,k]], {k,0,n}], {n,0,20}] (* _Vaclav Kotesovec_, Aug 27 2025 *)
%o A377445 (PARI) a(n) = 2*sum(k=0, n, (3*k+1)!/(2*k+2)!*abs(stirling(n, k, 1)));
%Y A377445 Cf. A052803, A377446, A377449.
%Y A377445 Cf. A367158.
%K A377445 nonn,changed
%O A377445 0,2
%A A377445 _Seiichi Manyama_, Oct 28 2024