cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377449 E.g.f. satisfies A(x) = 1/(1 + A(x) * log(1 - x))^4.

This page as a plain text file.
%I A377449 #9 Oct 29 2024 09:06:56
%S A377449 1,4,56,1388,50444,2436176,147308248,10720410984,913099165080,
%T A377449 89150817350880,9819313409197632,1204676163038931744,
%U A377449 162935364815509750368,24088567621306193343360,3864931159784777490964608,668886871993798772730203136,124209455281616641852564586496
%N A377449 E.g.f. satisfies A(x) = 1/(1 + A(x) * log(1 - x))^4.
%F A377449 E.g.f.: B(x)^4, where B(x) is the e.g.f. of A377448.
%F A377449 a(n) = 4 * Sum_{k=0..n} (5*k+3)!/(4*k+4)! * |Stirling1(n,k)|.
%o A377449 (PARI) a(n) = 4*sum(k=0, n, (5*k+3)!/(4*k+4)!*abs(stirling(n, k, 1)));
%Y A377449 Cf. A052803, A377445, A377446.
%Y A377449 Cf. A377448.
%K A377449 nonn
%O A377449 0,2
%A A377449 _Seiichi Manyama_, Oct 28 2024