cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377461 Number of ranked labeled trees compatible with the 2-leaf perfect phylogeny of sample size n that possesses the largest number of compatible ranked labeled trees.

Original entry on oeis.org

1, 1, 2, 9, 54, 540, 6480, 113400, 2268000, 61236000, 1837080000, 70727580000, 2970558360000, 154469034720000, 8650265944320000, 583892951241600000, 42040292489395200000, 3573424861598592000000, 321608237543873280000000, 33608060823334757760000000
Offset: 2

Views

Author

Noah A Rosenberg, Jan 03 2025

Keywords

Comments

The 2-leaf perfect phylogeny of sample size n that possesses the largest number of compatible ranked labeled trees is (floor(n/2), ceiling(n/2)); a(n) is the number of ranked labeled trees for this perfect phylogeny.

Crossrefs

Programs

  • Mathematica
    a[n_] := ((n - 2)!/((Floor[n/2] - 1)! (n - 1 - Floor[n/2])!)) Product[Binomial[i, 2], {i, 2, Floor[n/2]}] Product[Binomial[i, 2], {i, 2, Ceiling[n/2]}]
    a[n_] := ((n - 2)!/((Floor[n/2] - 1)! (n - 1 - Floor[n/2])!)) Floor[n/2]! (Floor[n/2] - 1)! Ceiling[n/2]! (Ceiling[n/2] - 1)! /(2^(Floor[n/2] - 1) 2^(Ceiling[n/2] - 1))

Formula

a(n) = ((n-2)! / ((floor(n/2)-1)! (n-1-floor(n/2))!)) * (floor(n/2))! (floor(n/2)-1)! (ceiling(n/2))! (ceiling(n/2)-1)! / (2^(floor(n/2)-1) 2^(ceiling(n/2)-1)).
a(n) = A001405(n-2)*A006472(floor(n/2))*A006472(ceiling(n/2)).
a(2n) = A306266(n).