This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377463 #11 Oct 31 2024 01:14:49 %S A377463 2,3,6,7,8,9,10,11,12,13,14,15,18,19,22,23,24,25,26,27,28,29,30,31,32, %T A377463 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55, %U A377463 56,57,58,59,60,61,62,63,66,67,70,71,72,73,74,75,76,77,78 %N A377463 Numbers that are not the sum of distinct powers of 4. %C A377463 Complement of the Moser-de Bruijn sequence (A000695). %C A377463 Numbers whose base 4 digits contain either 2 or 3. %o A377463 (Python) %o A377463 from gmpy2 import digits %o A377463 def A377463(n): %o A377463 def f(x): %o A377463 s = digits(x,4) %o A377463 for i in range(l:=len(s)): %o A377463 if s[i]>'1': %o A377463 break %o A377463 else: %o A377463 return n+int(s,2) %o A377463 return n-1+(int(s[:i] or '0',2)+1<<l-i) %o A377463 m, k = n, f(n) %o A377463 while m != k: m, k = k, f(k) %o A377463 return m %o A377463 (Python) %o A377463 from itertools import count, islice %o A377463 from gmpy2 import digits %o A377463 def is_A377463(n): return max(digits(n,4))>'1' %o A377463 def A377463_gen(): # generator of terms %o A377463 return filter(is_A377463,count(1)) %o A377463 A377463_list = list(islice(A377463_gen(),50)) %Y A377463 Cf. A000695, A074940 (base 3 analog), A136399 (base 10 analog). %K A377463 nonn,easy %O A377463 1,1 %A A377463 _Chai Wah Wu_, Oct 29 2024