This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377466 #26 Nov 06 2024 04:35:19 %S A377466 4,9,11,30,327,445,3512,7789,9361,26519413 %N A377466 Numbers k such that there is more than one perfect power x in the range prime(k) < x < prime(k+1). %C A377466 Perfect powers (A001597) are numbers with a proper integer root, the complement of A007916. %C A377466 Is this sequence finite? %C A377466 The Redmond-Sun conjecture (see A308658) implies that this sequence is finite. - _Pontus von Brömssen_, Nov 05 2024 %F A377466 a(n) = A000720(A116086(n)) = A000720(A116455(n)) for n <= 10. This would hold for all n if there do not exist more than two perfect powers between any two consecutive primes, which is implied by the Redmond-Sun conjecture. - _Pontus von Brömssen_, Nov 05 2024 %e A377466 Primes 9 and 10 are 23 and 29, and the interval (24,25,26,27,28) contains two perfect powers (25,27), so 9 is in the sequence. %t A377466 perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1; %t A377466 Select[Range[100],Count[Range[Prime[#]+1, Prime[#+1]-1],_?perpowQ]>1&] %o A377466 (Python) %o A377466 from itertools import islice %o A377466 from sympy import prime %o A377466 from gmpy2 import is_power, next_prime %o A377466 def A377466_gen(startvalue=1): # generator of terms >= startvalue %o A377466 k = max(startvalue,1) %o A377466 p = prime(k) %o A377466 while (q:=next_prime(p)): %o A377466 c = 0 %o A377466 for i in range(p+1,q): %o A377466 if is_power(i): %o A377466 c += 1 %o A377466 if c>1: %o A377466 yield k %o A377466 break %o A377466 k += 1 %o A377466 p = q %o A377466 A377466_list = list(islice(A377466_gen(),9)) # _Chai Wah Wu_, Nov 04 2024 %Y A377466 For powers of 2 see A013597, A014210, A014234, A188951, A244508, A377467. %Y A377466 For no prime-powers we have A377286, ones in A080101. %Y A377466 For a unique prime-power we have A377287. %Y A377466 For squarefree numbers see A377430, A061398, A377431, A068360, A224363. %Y A377466 These are the positions of terms > 1 in A377432. %Y A377466 For a unique perfect power we have A377434. %Y A377466 For no perfect powers we have A377436. %Y A377466 A000015 gives the least prime power >= n. %Y A377466 A000040 lists the primes, differences A001223. %Y A377466 A000961 lists the powers of primes, differences A057820. %Y A377466 A001597 lists the perfect powers, differences A053289, seconds A376559. %Y A377466 A007916 lists the non-perfect-powers, differences A375706, seconds A376562. %Y A377466 A046933 counts the interval from A008864(n) to A006093(n+1). %Y A377466 A081676 gives the greatest perfect power <= n. %Y A377466 A131605 lists perfect powers that are not prime-powers. %Y A377466 A246655 lists the prime-powers not including 1, complement A361102. %Y A377466 A366833 counts prime-powers between primes, see A053607, A304521. %Y A377466 A377468 gives the least perfect power > n. %Y A377466 Cf. A000720, A023055, A031218, A045542, A052410, A053706, A069623, A116086, A116455, A216765, A308658, A336416, A345531, A375740, A376560, A376561, A377057. %K A377466 nonn,more %O A377466 1,1 %A A377466 _Gus Wiseman_, Nov 02 2024 %E A377466 a(10) from _Pontus von Brömssen_, Nov 04 2024