This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377468 #18 Nov 06 2024 04:12:03 %S A377468 1,4,4,4,8,8,8,8,9,16,16,16,16,16,16,16,25,25,25,25,25,25,25,25,25,27, %T A377468 27,32,32,32,32,32,36,36,36,36,49,49,49,49,49,49,49,49,49,49,49,49,49, %U A377468 64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,81,81,81 %N A377468 Least perfect-power >= n. %C A377468 Perfect-powers (A001597) are numbers with a proper integer root, complement A007916. %F A377468 Positions of first appearances for n > 2 are A216765(n-2) = A001597(n-1) + 1. %t A377468 perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1; %t A377468 Table[NestWhile[#+1&,n,#>1&&!perpowQ[#]&],{n,100}] %o A377468 (Python) %o A377468 from sympy import mobius, integer_nthroot %o A377468 def A377468(n): %o A377468 if n == 1: return 1 %o A377468 def bisection(f,kmin=0,kmax=1): %o A377468 while f(kmax) > kmax: kmax <<= 1 %o A377468 while kmax-kmin > 1: %o A377468 kmid = kmax+kmin>>1 %o A377468 if f(kmid) <= kmid: %o A377468 kmax = kmid %o A377468 else: %o A377468 kmin = kmid %o A377468 return kmax %o A377468 def f(x): return int(x-1+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) %o A377468 m = n-f(n-1) %o A377468 return bisection(lambda x:f(x)+m,n-1,n) # _Chai Wah Wu_, Nov 05 2024 %Y A377468 The version for prime-powers is A000015. %Y A377468 The union is A001597 (perfect-powers), without powers of two A377702. %Y A377468 Positions of last appearances are also A001597. %Y A377468 The version for primes is A007918 or A151800. %Y A377468 The version for squarefree numbers is A067535. %Y A377468 Run-lengths are A076412. %Y A377468 The opposite version (greatest perfect-power <= n) is A081676. %Y A377468 A000040 lists the primes, differences A001223. %Y A377468 A000961 lists the powers of primes, differences A057820. %Y A377468 A001597 lists the perfect-powers, differences A053289, seconds A376559. %Y A377468 A007916 lists the non-perfect-powers, differences A375706, seconds A376562. %Y A377468 A069623 counts perfect-powers <= n. %Y A377468 A076411 counts perfect-powers < n. %Y A377468 A131605 lists perfect-powers that are not prime-powers. %Y A377468 A377432 counts perfect-powers between primes, zeros A377436. %Y A377468 Cf. A014210, A014234, A023055, A031218, A045542, A052410, A065514, A188951, A216765, A336416, A345531. %K A377468 nonn %O A377468 1,2 %A A377468 _Gus Wiseman_, Nov 05 2024