This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377502 #9 May 27 2025 14:54:08 %S A377502 6,24,120,12,28,96,252,600,1364,3048,6552,13804,29040,59520,122400, %T A377502 248472,504868,1017840,2054388,4126100,8294444,16628160,33349800, %U A377502 66784536,133775712,267736392,535920696,1072242540,2145452092,4291768320,8585609340,17173070880,34350563940 %N A377502 Number of minimum distinguishing labelings in the cycle graph C_n. %C A377502 The distinguishing number of the n-cycle graph is 3 for n = 3, 4, 5 and 2 for n >= 6. %H A377502 Andrew Howroyd, <a href="/A377502/b377502.txt">Table of n, a(n) for n = 3..1000</a> %H A377502 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CycleGraph.html">Cycle Graph</a>. %H A377502 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DistinguishingNumber.html">Distinguishing Number</a>. %F A377502 a(n) = 2*n*A032239(n) for n >= 6. - _Andrew Howroyd_, May 27 2025 %o A377502 (PARI) a(n)={2*n*if(n<6, if(n>2,[1,3,12][n-2]), sumdiv(n, d, moebius(n/d)*(2^d/n - if(d%2, 2^((d+1)/2), 3*2^(d/2)/2)))/2)} \\ _Andrew Howroyd_, May 27 2025 %Y A377502 Cf. A032239. %K A377502 nonn %O A377502 3,1 %A A377502 _Eric W. Weisstein_, Oct 30 2024 %E A377502 a(27) onwards from _Andrew Howroyd_, May 27 2025