This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377506 #33 Jan 12 2025 17:29:24 %S A377506 1,0,0,-1,4,-19,107,-716,5498,-47789,463517,-4962289,58115593, %T A377506 -739030560,10140362326,-149320366368,2348685116841,-39299792354491, %U A377506 697018000148170,-13061370974841665,257854085426453001,-5349016057902489052,116324040001711961903,-2646269955793816322943,62852365790563502907461 %N A377506 a(n) is the nearest integer to 1/gamma(x_n), where x_n is the n-th extrema of gamma(x). %C A377506 a(n) approximately equals round(1/gamma(-n+ arctan(pi/log(n)) / pi)). %C A377506 This sequence shows how rapidly the extrema of the gamma function approach the real axis on the negative side. %H A377506 Wikipedia, <a href="https://en.wikipedia.org/wiki/Gamma_function#Minima_and_maxima">Gamma Extrema</a> %H A377506 Wikipedia, <a href="https://en.wikipedia.org/wiki/Digamma_function#Roots_of_the_digamma_function">Digamma Roots</a> %e A377506 a(0) = round(1/Γ(x_0)) = round(1/Γ(1.4616321449683622)) = round(1/0.8856031944108887) = 1 %e A377506 a(1) = round(1/Γ(x_1)) = round(1/Γ(-0.5040830082644554)) = round(1/-3.544643611155005) = 0 %e A377506 where x_m is the m-th extrema of gamma(x) or equivalently the m-th root of digamma(x). %t A377506 a[n_] := Module[{root}, %t A377506 root = FindRoot[PolyGamma[0, x] == 0, {x, -n + 10^-10, -n + 0.5}, WorkingPrecision -> 100]; %t A377506 Round[1/Gamma[x /. root]] %t A377506 ] %t A377506 Table[a[n], {n, 0, 24}] %o A377506 (Python) %o A377506 from mpmath import findroot, digamma, mp, iv %o A377506 mp.dps = iv.dps = 30 %o A377506 def generate_sequence(n): %o A377506 seq, gamma_extrema = [], 1.4616321449683622 %o A377506 for i in range(n): %o A377506 gamma_extrema = findroot(lambda x: digamma(x+1), x0=gamma_extrema-1) %o A377506 reci_gamma = iv.rgamma(gamma_extrema+1) %o A377506 gamma_extrema = -mp.fabs(gamma_extrema) %o A377506 assert -i-1 < -mp.fabs(gamma_extrema) < -i-0.4 %o A377506 nint_reci = mp.nint(reci_gamma.a) %o A377506 assert nint_reci == mp.nint(reci_gamma.b) %o A377506 seq.append(int(nint_reci)) %o A377506 return seq %o A377506 A377506 = generate_sequence(n=25) %Y A377506 Cf. A374856. %K A377506 sign %O A377506 1,5 %A A377506 _Jwalin Bhatt_, Oct 30 2024